
NIIO APPLICATIONS OF DISCRETE

S OPTIMIZATION TECHNIQUES TO
Cq CAPITAL INVESTMENT AND

SNETWORK SYNTHESIS PROBLEMS

by
Weipe Ochoa-Rosso

SEARCH AND CHOICE IN TRA.NSPORT SYSTEMS PLANNING

Volume Xof a Series

SCOO OF IGNE II

Prepaored in Cooperation with

the M.I.T. Urban Systems Lcboratory

R68-42 June 1968

Roproduced by the

for Fedieral Scientific & Technical
lnforma~lion Springfield Va. 22151



Research Report R68-42

APPLICATIONS OF DISCRETE OPTIMIZATION TECHNIQUES

TO CAPITAL INVESTMENT

AND NETWORK SYNTHESIS PROBLEMS

by

Felipe Ochoa-Rosso

Assistant Professor of Civil Engineering (Visiting)

SEARCH AND CHOICE IN TRANSPORT SYSTEMS PLANNING

Volume III of a Series

Prepared in cooperation with
the M.I.T. Urban Systems Laboratory

Sponsored by the U.S. Department of
Transportation and the General Motors Grant

for Highway Transportation Research

Transportation Systems Division
Department of Civil Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

June, 1968



ABSTRACT

The purpose of this work is to formulate and solve certain
optimization problems arising in the fields of engineering economics,
scarce resource allocation, and transportation systems planning.

The scope and structure of optimization theory is presented in order
to place subsequent work in proper perspective. A branch and bound al-
gorithm is rigorously developed which can be applied to the optimization
problems of interest. A rounding operation is defined, which provides a
powerful rejection rule and permits the calculation, at each stage of the
solution process, of an upper bound and a feasible solution in addition to
the usual lower bound._This double bounding technique implies littlE cr
no extra computational effort.

Subsequent chapters are devoted to the study of various cases of
capital investment problems. Investment in sets of independent projecý.
is considered first. For the (0-1) multi-dimensional knapsack problem a
new formulation, interpreted as a network synthesis problem on a bipartite
graph, is given. This formulation permits the straightforward application
of the branch and bound algorithm, and allows the solution of the linear
program associated with each node of the solution tree to be obtained by
inspection.

lhis study is pursued by considering capital investment in a single
time period as a special case of the previous problem. Certain economicinterpretations are derived by investigating the dual program of the dis-

crete knapsack problem. A parametric branch and bound method is developed
which permits the solution of the knapsack problem for a range of values
of the budget ceiling.

Two formulations are proposed for a special case of deferred capital
investments, referred to as the multi-knapsack problem. The first formu-
lation, after a transformation by means of a model equivalent, leads to a
branch and bound algorithm which requires the solution of a standard trans-
portation problem with surplus and deficits and certain routes prohibited
at each step of the algorithm. The second model, although it may require
a larger tree before optimality is rea:hed, permits the solution by
insoection of the linear program associated with each node if the solution
tree.



The final part of this thesis studies capital investment for
dependent proposals in the context of urban transportation planning. The
branch and bound algorithm is adapted to the link addition network design
problem, where a descriptive traffic assignment model is employed.

Finally, foi the multistage link-addition network synthesis problem,
a normative model is formulated as a block-angular mixed-integer linear
program. A partitioning technique is employed to take advantage of the
highly-structured foym of the model.

We conclude with a detailed presentation of the partitioning
technique of Benders, as applied to both continuous and mixed-integer
prograirming problems presenting a block-angular structure.
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CHAPTER I

FUNDAMENTAL CONCEPTS O% OPTIMIZATION THEORY

1.1 INTRODUCTION

The goal of this chapter is to formaiize the concepts relevant to
Idescribing the nature and scope of optimiza.tion theory. We begin by de-

fining the optimization problem and discussing its complex nature. We
identify the fundamental steps in the solution process of optimization

problems as: i) problem definition, ii) faimulation of an optimization
I model, iii) selection of a solution method, and iv) application of the

solution method. Each step of the process and its implications Is dis-

cussed in detail for a variety of applications.

A classification of optimization models and of solution methods is

presented. The material covered in this chapter and a historical survey

of optimization theory (cf. Appendix B) are intended to present a general

framework of the theory which will be applied fn the mnain body of this work

to specific types of optlm4zation problems. Finally, we shall discuss

some Important aspects of optimization in the context of analysis and de-

sign of engineering systems.

1.2 THE OPTIMIZATION PROBLEM

Whenever an engineer or decision maker is confronted with the problem

of selecting a course of action from a set of alternatives he will be com-

pelled to choose, from the available alternatives, the best in terms of a

certain predetermined goal or set of goals relevant to the nature of the

proLlem.
It is assumed that the degree to which the goal or objective of the

problem is reached for each alternative course of action can be evaluated

by a quantitative method. In other words, a measure of the utility of each
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course of action way be obtained, allowing the decision maker to select
the alternative yielding the maximum utility. The degree to which the goal

is obtained is the 6iqute o6 ityniet for a particular solution'.

DEFINITION, An optimization problem is defined as the one of selecting

among a set Of various alternatives-.(possibly infinite) of a certain prob-
lem, the one for which a given figure of merit is optimized (i.e.,

maximized or minimized).

1.3 OPTIMIZATION THEORY. THE NATURE OF-THE OPTIMIZATION PROBLEM

The nature of optimization problems is often quite complex, and a

wide variety of cases presenting different characteristics is encountered

in practical problems. To visualize the complexity which may be present
in the nature of thp problem, consider the following examples: i) a deci-

sion maker may be confronted with a problem having a clearly-defined ob-
jective to optimize; however, the problem may or may not be subject to a

set of constraints. He may also have to consider the solution to the prob-

lem on the assumption of either deterministic or stochastic behavior.

ii) the decision maker may have to interact and compete with other parti-

cipants, each of whom is attempting to make decisions which optimize his

own figure of merit. iii) several decisions may have to be made on a

multistage problem, where the goal sought is a long-range optimization as

opposed to suboptimization of a particular stage of the problem.

It is this complex nature as well as the different structural char-

acteristics of the models (cf. Section 1.6) that clearly indicate the need

for a variety of techniques to cope with the solution of optimization
problems. The set of all these techniques, namely those included under

the specific names of mathoiia.UcaL ptogurnning, gacne thecmoy, ata•ti6tica.

dec.Won theoAy, dyn.wutc prcgkcmiing, cont'ot thteory, caLcuWLu o6 ua.'a-

tion,, etc., constitute with their theoretical foundations the general

theory of optimization,

Optimization theory in its widest sense is the unified branch of
mathonatcat anaCisis that provides a formal approach to the solution of

optimization problems.
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1.4 SOLUTION PROCESS

The solution process for optimization problems may not be identical

in all cases and may differ depending on the special nature of the prob-

lem; nonetheless it will always be possible to distinguish in the process

the basic steps indicated in Fig. 1-1. The various loops indicate possible

revision of the previous decision.

PROBLEM DEFINITION

-Parameters

-Control variables

FORMULATION OF

MATHEMATICAL MODEL

•Objective Function

-Constraints

SELECTION OF

SOLUTION METHOD

APPLICATION OF

SOLUTION METHODILL-
Fig. 1-1, Optimization Problem Solution Process

1.5 PROBLEM DEFINITION

At the problem definition stage the decision or control variables

governing the problem are identified, and the form of interactions among

the variables is specified. A iigure of merit must be defined in terms
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of the relevant control variables and the range of variation of the controls

must be explicitly or implicitly specified. Finally, the constraints to

be satisfied by the variables must also be established.

1.6 FORMULATION OF A MATHEMATICAL MODEL

Once the problem has been properly defined, the subsequent step will

be to formulate an abstract model (usually a mathematical model), that

faithfully represents the essential structure of the problem and that may

be amenable to solution through application of a well-known procedure.

Whenever reference is made to models it will be understood in the sense of

Karlin*, "a model is a suitable abstraction of reality preservit.g the es-

sential structure of the problem in such a way that its analysis affords

insight into both the original concrete situation and other situations

which have the same formal structure".

It is clear that solution of the model will produce accurate results

only to the extent that the model is representative of the original prob-

lem. If the problem has not been properly modeled, its solution may lead

to dubious results or completely erroneous ones; for instance, consider

the case of a linear programming model giving an unbounded solution as a

result of a constraint of the problem not being included in the model.

We shall now analyze some distinctive characteristics of optimization

models that will permit their convenient classification. This will be use-

ful for further Identification of the models that will be encountered in

subsequent chapters,

We shall distinguish three main components of an optimization model:

i) the set of problem variables, ii) the figure of merit to be optimized,

iii) the domain of definition of the problem variables (determined by the

constraints of the problem). The optimal solution for certain classes of

optimization probiems consists of numerical values taken by the pr.blen

variables, satisfying the constraints and simultaneously nptimizir, the

figure of merit. Other classes of optimization nrrblems seek to f', d a

KarlIn, S. Maathvaticat kiethod6 and TheorLy in Gcme6, Prog'a~ing, and
Econcm.c, Vol. 1, Addison-Wesley, 1959, p. 1.
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curve or function (variational problems), that satisfies a set of con-

straints and renders optimal a certain functional expression of the set

of feasible solut'on curves.

For certain prob)ems the objective wfll be anenable to a closed form
mathematical representation as a function of the control variables. For
other problems this closed representation might not be obtainable, and the
figure of merit for a given set of values of the control variables may

only be known after a complex process has been completed (such as a simu-
lation process, an engineer'ng analysis, the solution of an elaborate

computer program, or a table look-up).

Furchermofe, the pr.b'em may be to,ýtAined or jnconstrained, For

constrained problems capable of fomulation in a closed form mathematical

representation, the nature of the constraint expressions may be quite di-

verse. For instance they may be algebraic or transcendent expressions,

equalities or inequalbties, linear or nonlinear with the domain of the

variables being a discrete set or the continuum. Also some of the con-

straints may be differential equations or definite integrals.

In the light of the above discussion we have developed the tree-

structured classification of optimization models illustrated in Fig. 1-2.

The tree obviously may be expanded in both the vertical and horizontal di-

rections to make it as complete as is needed or desired.

We shall be able to distinguish certain branches of the tree, repre-

senting specific classes of problems, for which the solution procedures

forin a well-established mdthomatical development. Fcr instance, models in

the constrained optimization branch for which both the constraints and

objective may be represented in closed algebraic form constitute that part

of optimization theory generally known as mhematicaZ p.tcg-'M,,ng.

As a second exdmple, consider the class of problems for which the

explicit objective functiun is expressed by a definite integral (functional

objective) with o," without subs-diary conditions, The solution of such
models falls within the scope of the ,t5cat ca•cu&6 o6 vaA•at'•Xon.

Finally, consider those models with constraints and/or objective

lacking a closed mathematical representation The optimization of such

models must be attained by any means short of orute force; the techniques

usually applied fall under the general name ot d('Tect ýaýich method•L
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8 CONCEPTS OF OPTIMIZAIION THEORI

An example of thib class would be a certain stochastic process (e.g. a

waiting line, a given renewal process) being analyzed by means of a costly

computer, • ,ulation. The input pdrameters may be varied and the simula-

tion executed for each set of values. Associated WIth the output of each

run, a mz6uA.e o6 e6dec tcvenu (MOE), of the corresponding input para-

meters may be estimated. If the problem 'i to select the input parameters

that op.,-mqze the MOE, a direct search techn que 1; required in this case

to find the optimum while minimIzing the number of s~mulated trials.

1.7 SOLUTION TECHNIQUES

Solution techniques are the procedures and algorithms devised for the

solution of optimization problems. The actual solution usually entails

determination of numerical values of the control variables and the optimum

value of the figure of merit,

Optimization methods are usually broken down 'rito two major categor-

ies: indi•Lect anid dZect me•thc&o. With direct methods, the optimum solu-

tion is sought by directly calculating values of the objective function at

different points of the feasible domain. The values thus obtained are

compared and, by means of an a:;xiliary criterion, a new point is next anal-

yzed which hopefully will imFro.e the value of the objective function.

Alternatively, indirect methods look for a set of values of the

control variables that satisf', known necessary condit:ons for optimality.

The classical method of the differential ,.alculus ts an example of the

indirect type. In effect, values of the va-iables are sought for which

the first den vatives of the objective function van'sh, provIded that con-

tinuity of the function and existence of derivatives in the region of

interest are guaranteed In this way, the optimization problem has been

transformed into a root-finding problem.

The Simplex algorithm of linear progranmning e~h'bits features of both

the direct and indirect methods It performs a direct search over extreme

points of the teasible domain only (points sat'tfying the necessary con-

dition for an optimum) in such a way that the objective tunction is at

least as good as in the previous step, Finally, the optimum among the set
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of extreme points Is detected when the indirect criterion of feasibility
of the complementary solution to the as.ociated dual problem is satisfied.

For certain mathematica; models of optimfzation, a solution method
may include transforming the original model !nto an equivalent one that

promises to be more tractatle than the former (cf. Chapters III and IV).
Consider the methodology of e:tuc pmLgtnmtng; in this case, the
polynomial optimization is formulated in terms of its dual problem and this
is the model that is actually solved. Another example ii the transforma-
tion into a linear prvgr•-iing problem of a .5epJ..te nonlinear program.

Direct techniques may be subdivided into two major groups.
4imuttaneout and 4equ .x- methods, Simultane~us -earch tecnniques ca)-
culate values of the objective function or response surface at a set of
points determined a p-kokt by a certain search strategy, Sequential search
methods, on the other hand, deal with sequential examinaticn of trial solu-
tions, basing the location of subsequent trials on the results of earlier

ones. We present in Fig. 1-3 a subset of representative solution techniques

for each one of the classes of methods discussed in this section

1.8 SELECTION OF A METHOD

The selection of a convenient solution method for a given problem

depends on the type of model employed, the existing solution techniques for

that particular model, and the computation facilities available to the
ergineer-analyst.

In the selectinn process one may consider such factors as linearities

of the model, number of variables, number of constraints, special struc-
tures, separability or weak-coupling of variables in constraints and/or
objective, objective or constraint surfaces of readily interpreted geo-
metric character, etc

The final selection of a well-suited method for a particular, problem

depends then on the detailed properties of the model as well as the solu-

tion techniques that form part of a software package of an available computer

-installation.

Duffin, R J,, E. L Peterson, and C M Zener, Geonetttc Ptogt•imj, ig,
Joho Wiley, 1967
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12 CONCEPTS OF OPTIMIZATION FHEORY

We have just presented a brief review of some classes of optimization

problems, the mathematical rodels applicable to these problems, and the

methods available for their solution, To place the developments of optiml-

zation theory in proper perspective, the reader is referred to Appendix B

for a survey of the most significant contributions of different mathema-

ticians through the centuries.

In the following section we shall discuss concepts relevant to

engineering systems optimization, as a framework for the class of problems

undertaken in the main body of the text.

1.9 ENGINEERING SYSTEMS OPTIMIZATION

The engineer uses analytical and experimental methods to analyze and

interpret the behavior of the physical world in such a way that appropriate

decisions can be made regarding investment of scarce resources for the

development of facilities of economic utility.

In general, the engineer seeks a design which satisfies a certain

specified performance of the facility in an economical manner. The mean-

ing of eeoncan.ca is subject to various interpretations. It may mean a

least cost design including both construction and operating costs. On the

other hand, one may seek a design yielding the highest level of performance

consistent with the given construction and operating budgets; one may also

mix these extreme cases,

With this in mind, we can view the task of the engineer as that of

providing the best solution to the problem as described; therefore, the

engineer corAfronts an optimization problem in the sense discussed in

previous sections.

From the practical, computational point of view, the majority of

engineering system design problems are sufficiently complex that one can-

not provide a mathematical model for the entire problem which could be

solved by one of the solution techniqvt: indicAted previously.

However, any engineering system design problem is defined in terms of

a set of boundaries which delineate the range of the systems of interest.

These boundaries represent an arbitrary but presumably reasonable separa-

tion of the system under consideration from other systems in %hich it is
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imbedded. Hence, the design problem can be viewed as a suboptimization of

a set of subsystems, the union ot which compose the system of interest.

Therefore, it seems perfectly natural to fragment an engineering

system design problem into components, some of w•hich may be sufficiently

limited as to permit the application of optimizatvon techniques. It is

evidert that the set of optimum solutions to the selected components will

not in general constitute an optimum to the or'ginal system but simply a

suboptimal solution.

The traditional process for solving an engineering system design problem

usually takes the form of a trial and error procedure. However, in those

cases vanert i in :, priolemi are .' 'j: subjected to mlathe-

matical opt~mizaton techniques, the engineer-analyst draws bour|daries

about the fragment of the design problem so that a closed form mathematical

representation of the system is obtained. Known optimization techniques

are then applied to this representation or model, and an optimal solution

to the design problem is calculated.

When it is possible to isolate a system fragment of significant phy-

sical extensiveness and calculate its optimum design by a convergent process,

we say that a synth,'sis algorithm exists for the design of the system.

While it may not be possible to isolate a section of a design problem

such that its optimization may be termed a synthesis procedure, one ex-

pects to find parts of engineering design problems whose solutions will be

small-scale optimizations. The solutior of these small-scale optimizations
which occur as parts of the total system w,'ll be of special interest in the

incremental process of developing a total synthesis algorithm

Throughout this work we shall be concerned with exploring parts of

engineering design problems, the solution of which may be solved by known

optimization techniques. The first part of the material covers optimal

allocation of capital resources to a finite set of facilities. Problems

involving synthesis of transportation networks will be developed in the

remaining parts of the work,
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CHAPTER II

A BRANCH AND BOUND ALGORITHM FOR A CLASS OF
DISCRETE OPTIMIZATION PROBLEMS

2.1 INTRODUCTORY REMARKS

Branch and bound algorithms, a class of solution methods for integer

programming problems, have been extensively studied since the first pro-
cedure of this class, offering a new and fresh approach to the solution of
c(cmbinatorial problems, was published by Land and Doiy [I] in 1960.

The name bunceh and hound is due to Little et bl. [2]. These authors

successfuly employed a technique in this class to obtain a solution to the
traveling saleman problem which was substantially more efficient than

solutions previously available. This result encouraged further investi-
gation into the applicability of this technique. Improvements of existing
methods were carriad out by Dakin [3] and Driebeek (4], and further appli-

cations are due to Ignall and Schrage [5] on the job scheduling problem,
to Efroymson and Ray [6] on a plant location problem, Hershdorfer et al.

[12] on the assignment of numbers to rodes of a tree-dimensional grid so
that the bandwidth of the associated node-node incidence matrix is mini-

mized, and to Gavett and Plyter (7] on the optimal assignment of farilities
to locations. A survey on the state of the art 6p to 1966 may be found in
the work of Lawler and Wood [9].

Various formalizations of the general class of branch and bound methods

have been undertaken by Agin [8], Lawler and Wood [9], Roy, Nghiem, and
Bertier [10] and others. Most recently Ichbiah (11] generalized the work

of Roy, et al. and developed a parametric b-anch and bound technique.
In subsequent chapters we shall study various optimization problems

arising in the fields of transportdtion systems an&lysis and design, and
capiLal budgetino for independent and dependent projects. The~sproblems
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16 A BRANCH AND BOUND ALGORiTHM

will be mathematically formulated as discrete-bivalent programming prob-

lems (i.e., one in which a pair of feasible values is specified for each

member of a subset of problem variables). These problems arise in appar-

ently independent areas but it is possible to develop mathematical models

for these problems, which in fact are closely related. These models can

all be solved by a branch and bound technique of the Land and Doig type

requiring the solution of network flow or transportation type problems at

each step of the iterative procedure.
Since each of the problems we shall consider is solved by a variant

of our branch and bound technique, this chapter presents the general foniu-
lation of this method as a basis for the particular applications.

The problems that we shall study share the characteristic that a

feasible solution can be obtained with little or no computational effort

at every stage of the algorithm. Associated with this property is a means

for developing both an upper and a lower bound to the objective function
at each stage of the procedure. This double bounding technique leads to

a reduction of the search space and to an increase in the efficiency of

the solution technique.
The next section describes the mathematical structure associated with

our class of problems, and subsequent sections describe the common elements

of the solution technique and prove its validity and finite convergence.

2.2 MATHEMATICAL FOR4ULATION FOR THE CLASS OF PROBLEMS

Let x denote a vectir in En and S, a closed and bounded convex set

with boundaries defined by hyperplanes in En. Let T1 be a finite non-
empty set of vectors in the same space, and denote hv al a finite subset

of S1 obtained by the intersection of S1 and T1 , a1 u SIf TV"

Consluer the following discrete optimization problem the solution of

which is to be obtained.

P Determine x° and z° so a: to
Minimize z f(x)

Subject to x E 01

where f is a single-valued function of x.

A-
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DEFINITION. Let us denote by A the J'th auxiliary continuous problem,

derived from P as follows:

A Determine x (j) and z*(j) so as to

Minimize z(j) - f(x)

Subject to xc Si , j = 1,2,..

For J=l, S1 is given and for J>l, S is a subset of Sl to be defined In

section 2.4. We shall assLne that a finite algorit.vi, to be called after

Dakin (3], the hub-atgo't.Lob, exists for solution of problem A Further-

more, it is assumed that a feasible solution to problem P may be determined,

for each J, by "simple inspection" of the solution to problem Aj. This

solution will be denoted by _(j), c'(J). The "inspection" to be perfonred

on the optimum solution to A to o0tain a feasible solution to P will be

called a rounding opetation.

2.3 THE DIRECTED TREE

The branch and bound algorithm for solution of problem P, to be set

forth in section 2.5, is an iterative technique that may be interpreted as

the generation of a directed tree: T(i) = [N(i), A(i)], where N(i) and

A(i) are respectively the set of nodes and the set of directed arcs at the

end of iteration I. At each iteration, except for the first one during

which only the root node of the tree is created, two new directed arcs and

nodes will be added to the sets N and A.

Associated with each node JEN(i) are a subset flof S1 and a subset

S of S,, and associated with each arc (j,k) e A(i) is a set Vjk (cf.

Section 2.4).

At the end of the i'th iteration, the sub.Žt of N(i) corresponding

to the terminal nodes of the tree will be denoted by C(1). The set C(i)

will be partitioned further in-o three subsets, F(i). E(i) and R(i) such

that FU EUR- C. Set F will be called the set of 6e.ibte oA active

node, E the set of A.nfeakbic oA exctuded node6, and R the set of

e~jec;ted node.

The algorithm starts by generating the root of the tree, node 1,

associating S1 to it and solving A1. From then on, and in an iterative
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fashion, bifurcating arcs and their corresponding nodes are added to the
tree according to a b'ancdki opeAation. These directed arcs have as
origin a conveniently selected node from F(i). For each node j thus
created, the values x (J), z*(J) and _(J), z(J) are obtained by solving
the auxiliary problem A, and applying a koum£•jn opeawtion to its optimal
solution.

This iterative procedure terminates when the solution to the original

problem P, or sufficient evidence of the existencr of no solution, has
been obtained. This evidence is given by the operations of bowid£q , ex-
cILaion and xejection (to be defined), in conjunction with the branching
and rounding operations mentioned above.

2.4 BRANCH AND BOUND OPERATIONS

DEFINITION 1. Branching Operation. Let O, a non-empty subset of

Q, (if Qj - 0, no branching operation will take place, see Definition 3),
and SJC Sl be the sets associated with node J. The branching operation
is defined by a partition of O into two subsets 0r and Qr+l such that:

OrU "r+l z "1 (2.1)

Qrn a, t1, , (2.2)

where 0 is the empty set, This partition is achieved by creating two
directed arcs (j,r) am (j,r+l) emanating from node j with associated sets
Vj,r and Vi,r+i and two nodes r and r+l with associatecd sets 0r and Qr+1

such that:

,1jn Vj,r "r
(2.3)

nj n Vj , r+l r+l

We observe the following theremwhich characterizes V. and V
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THEOREM 2.1 Given SIP AU ien-t cond4ion& do4 Vj,r antd Vj,r+l to dejie

a pauZti.on.ig s, 6aiZng (2.1) and (2.2) w,.:

V i,r vJ,r+1 =o (2.4)

,1 c(vjrU V18,r1) (2.5)

Proof: Assume that (2.4) and (2.5) hold; then by intersecting both sides.

of (2.4) with we obtain

a~j n (Vj,rn Vj,,r+l) aj •no

and since the intersection of sets is distributive

(,j n Vj ,r) n (,j n vj,r+) =

Hence from (2.3) UIr fIr+l = 0

Finally (2.5) is equivalent to

ijn(Vj,yrU Vj,r+l) = "j

or (Inif Vj,r)U(ajAnVj,r+ 1) = oj

Hence, fro-n (2.3) nrU nr+l = 1j. This completes the proof.

Next we issociate to nodes r and r+1 the subsets Sr and St+l' defined

as fol lows:

Sr = Si n Vj,r
(2.6)

St4l = SjV,r+l

From the results of lemma 2.1 below, S1 is a subset of S We observe
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that only the following condition is satisfied for Sr and Sr+l:

Sr n Sr+1 - 0 (2.7)

That is, the sets Sr and S are mutually exclusive although they may not
be collectively exhaustive of S..

After a finite number of branching operations have been performed,

we may expect to have generated nodes t for which ot has been reduced to
a single element of the original domain a.l* It is also expected that the
corresponding St is reduced to contain exclusively the same single ele-
ment, so tha t St. We observe that this is possible for nt since, by

hypothesis, 1, is finite; but this -s not so for St, since Sl is infinite.

Hence, in order to guarantee that eventuilly Qt = St we have to restrict

)urther the sets Vj,r and Vj,r+l in the following way: it is assumed that
the sets Vj,r and Vj,r+l are such that in a finite number of branching

operations, nodes with Qlt containing one single element have an associated

St containing only the same single element. In the case of the particular
applications considered in the present work, this is a relatively simple
condition to satisfy. Finally, to initialize and make possible the branch-

ing operation, the sets Q, and Sl are assigned to the root node of the

solution tree.

LEM4A 2.1 Let Or and Sr be the 6et6 aa.ociated with node r o T(i). Then

Or a ab& t o 6 S r.

Proof: By induction. In effect, for r = 1, OllC Sl by hypothesis. Let

us assume that for node J, 0 j QSJ is satisfied. Then letting r be the
immediate successor of j and by intersecting each side of (2.3) and (2.6)

we have

r(1 Sr " (iOp Sj) nVj,r

But from the previous assumption, (lQ Sj j and therefore

or• nsr -- nl Vj, ,r
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Or using (2,3), S fl Sr Si~r' or equivalently 1rq _Sr, which completes the

proof,

Note that for a terminal node jzt with St containing a single element

x such that x e a,, then Qt _ St'

DEFINITION 2o Bounding operation. Given the current set F(i) of active
nodes, the bounding operation will be defined by means of the following

actions:

a) Lower bounding operation, This consists of selecting the node

k c F(i) such that

z*(k) = min {z*j)} (2.8)
j:F(i)

and of setting the value Li. the current iower bound for problem P, equal

to the value given by (2,6):

Li - z (k) (2.9)

Node k is said to be the bounded node for iteration i, defining the node
from which branching will take place at the next iteration.

b) Upper bounding operation. This consists of finding the value

Z(s) -- min {6(j)) (2,10)
j*F(i)

which constitutes the current least upper bound of the problem, and of

setting the value U, equal to the value given by (2,10):

U, i i(s) (2.11)

Expressions (2.9) and (2 11) constitute, respectively, the best lowir and
upper bounas of the problem at the end of the i'th iteration. This
statement will be su)stantiated by means of the following lemmas.
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LEMMA 2.2 16 node j i. the oimeda~te pedeceso, )6 r then

z (j) < z*(r)

Proof: If X_(j) -, x*(r) then z (r.) =z (j) since both Ar and A share

the same objective function- Otherwise, if x (j) # x*(r) and since

Sr CS due to the way the branching was defined, problem Ar is more re-

stricted, and consequently z*(j) < z

LEMMA 2 3 Let k be the boanded node o6 i.te•a.ion i w•,th a4ooiated vaue

Li gcven by (2 9) I x!_0 , z° , the op•imat 6ofut.4on to P, then Li S z°.

Proof: Let Li and L 1+1be the values given by (2.9), associated with any

two consecutive iterations From lemma 2.2 and since branching occurs

from the last bounded node, it follows that Li 5 Li÷] and thus Li 5 Lt

Z a 1. Now assume that the process of branching continues until the entire

tree has been developed at iteration t = t. The set F(t) will contain all

nodes associated with feasible solutions to P (guaranteed by branching

operation), Then Lt = min [z*(j). = z°. Hence Li s Lt z°, which

completes the proof, jEF(t)

From lemma 2.2 and the definitio., of bounding, we observe that at

each iteration the bounding operation indeed gives a lower bound to prob-

lem P as indicated by lemma 23; and also a better lower bound, (closer to

the optimum) than the previous iteration as asserted by lemma 2.2 and the

fact that branching occurs from the bounded node of the previous iteration.

LEMMA 2.4 1'6 i(J), 1(j) &. the 6ea6tbte ýoatu4on to ptobtle P obtained

6&om a 'ou d,.,zu ope..ttsv, at node j, then z 0 5.(J)..

Proof: If _(j) - x° it tollows that z° - i(J). Otherrwse i(j) # x°, and

since i(j) is only a feasible solution to P, then z° <i_(j).

The rounding operation thus provides an upperbound on z° at each node

it is perfomied upon. Now, since at the end of iteration i the best

lower bound corresponding to node k is L , and the best upper bound

corresponding to node s is Ul , the following theorem results:
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THEOREM 2.2. At any ,tt',tion, L i : Ui and i6 Li UV, the optimaX aot~ution
hW6 been obtatned; Lt covLespond6 to the totinded 4oLution o6 node s o6 the

cwuAen-t tte'.at4.2in.

Proof: ihe first part is evident: from the definition of bounding and

from lemmas 2 3 and 2.4, it follows that Li 1 ; z° < U1 and therefore

Li 5 U..

It remains to be proved that if Li = UV, node s is an optimum solution.

Additional branching would make the lower bound greater than Ui; and since

a feasible solution to P associated with node s has already been found,
all other feasible solutons tj P r:t yet discovered would yield no fi-

provement in z° given by s. Consequently, the feasible solution to P

associated with node s is the optimal.

DEFINITION 3. Exclusion. The exclusion operation is defined for a terninal
node r of C(i) for which the corresponding set 0r is empty. Since Or is

empty, no need exists to consider further branching from node r and, as

part of the exclusion operation, the node is assigned to the set E(i) of

excluded nodes.

LEMMA 2.5 16 the soZuiton to Ar ka .n6eakbte, then or = €"

Proof: If Ar is infeasible, its domain of definition is empty: Sr = ".rI
From lemma 2.1, s-nce ir CSr, it follows that or z €

DEFINITION 4. Rejection The rejection operation on node r consists of

assigning the node to the set R(i) of rejected nodes if the following

condition is satisfied:

z (r) > Ul.I

LEMMA 2.6 16 6oi node r at atL-• , i, z (rl t5 q'zat,.i than tite

uppertbovud at the ptevtouce aettoo, no fi.rtiei Lbtancho;g im. t

necuzavty
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Proof: Consider the follow-.ng possitle cases:

!) x*(r) J Q and z*(r) > Ui. Since U11 is by definition an

upperbound of the problem, it follows that Sr does not contain the op-

timum solution to P, and no further branching is required.

ii) xZ(r) c a and z*(r) > U1-1 : Although node r is a feasible

solution to P, the same argument as for case i) holds.

DEFINITION 5. Rounding operation. Let x*(j), z*(j) be the solution to

Aj associated with node J. The rounding operation consists of obtaining

from x (j), z (j) a feasible solution i (j), i(J) to problem P.

For the classes of problems considered throughout this work, unless

otherwise indicated, this operaticn is possible by conveniently rounding

off certain components of x (j). When ttis operation is possible, the

double bounding feature of the algorithm may be employed, thus resulting

in an improved branch and bound method.

We note that if the operation is possible for each node j, then:

a) The uppertound Ui may be updated at each iteration, thus making

possible the execucion of the rejection operation. Since a rejected node

is assigned to the subset R(i), and the selection for branching is per-

formed among the nodes in subset F(i), no further information associated

with the rejected node is required.

b) The updating of the upperbound Ui at each iteration reduces the

interval of uncertainty of the optimal solution z° at each iteration,

since L 1 . z° S U . Furthermore, if the branch and bound method is used

for suboptimization, and the process is temninated before an optimal

solution has been obtained, the algorithm nonetheless provides valuable

information at that step In effect, the available information is

represented by a feasible solution to the original problem P, pi. a lower

bound on the problem that permits us to estimate how far the available

feasiblo solution is from optimality.

c) A measure of effectiveness for the rounding operation iF provided by

the algorithm. Note that the set C(i) of termninal nodes of iteration i

contains exactly i nodes This is true, since a-- each iteration two new
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nodes are created, r and rtl and the node j from which branching occurred

is no longer terminal, hence the net increase is one terminal node.

Furthermore, according to the partition of C(i) defined eerlier, each

terminal node is assigned to one of the sets F(i), E(1) or Rýi).

Thus, if we let a be number of elements in F(N) and 0 the nuiber of

elements in R(i), a measure of effectiveness (MOE) of the rounding

operation may be defined as

MOE ý 0

With the possible operations and associated lcmmas established, we

now proceed to describe the algorithm

2.5 SPECIFICATION OF THE ALGORITHM

The branch and bound algorithm consists of an initial step that

generates thp root of the d,rected tree (iteratien 1), plus subsequent

analngous iterations, continued until either the optimal solution or suf-

ficient evidence of the existence of no solution is obtained. Note that

under the assumption that the rounding operation is possible, P will al-

ways have a feasible solution.

STEP 1. Set izi an, create node jzl. Set F(l):E(l)-R(1)-¢ Solve A1.

If the solution is infeasible, stop; problem P has no solution.

Otherwise, if _*(l) e 01. stop; the solution is optimal. if

x (l) 0 S11 bound node 1 with L1  z*(1). Round node 1 to ob-

tain ;(M), z(i) Set U1 z i(l). If L1  U1 , stop; the rounded

solution is optimal Otherwise, Ll < U1 Assign node 1 to F(l),
set i z i tI and go to step i.

STEP i a) BRANCH Branch from, bounded node j E F(i). Delete node J

from F(O) Create nodes r and r-i and directed arcs (j,r) and

(j, rtl) Solve problems Ar and A r+, ard in both cases do the

following: if Ar (Arti) is infeasible, ectdý node r(r+l) by

assigning it to E0) Otherwise Ar. (Artr) has ane optimum solution.
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If z*r) (z*(rtl)) > U. ,, eiject node r(r.t) oy assigning it to

set R(i) Otherwise, z (r) (z*(rtl)) _ Ui_, so assign node

r(r+l) to set F(i).

b) ROUND, Rouaid node r(r+l) if it was assigned to either' F(i)

or R(l).

c.1) BOUND FROM ABOVE. Set U1 z mirn EU11 , C(r), £(r+l)] for

node r(r+l)e t(i) or R(i)o Reject nodes of F(i) having

z (j) > U1 by assigning them to R(1).

c 2) BOUND FROM BELOW. Select node k e F(i) by using lower

bound operation. Lower bound node k with L= z (k). If Li = Ui,

stop; the feasible solution that provides the upperbound is

optimal. Otherwise, L1 < Ui. Set i i 1 1 and go to step i.

It remains to be s~own that the algorithm indeed finds the optimal

solution in a finite number of steps. Since it is assumed that the. round-

ing operation is possible, a feasible solution to P exists, and therefore

an optimal solution exists. Moreover, from the way the branching operation

has been defined and the hypothesis that Q is finite, the algorithm would,

In a finite number of steps, generate all feasible solutions to P. (i.e.,

solutions corresponding to terminal nodes). And finally, frorvi theorem

2.2, the optimal solution may be identified.

RA
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CHAPTER III

CAPITAL INVESTMENT ON INDEPENDENT PROJECTS

3.1 THE CAPITAL ALLOCATION PROBLEM

We shall refer to the probdlem of optimally allocating a fixed capital

budget jmon, a tinite seL of Lompetlng proposals as the capx&t allocaton

pobtem*. We can make a basic distinction between two classes of alloca-

tion problems which will result in substantially different analytical

formulations and hence different techniques to be used in their solution

process. These correspond to the cases of indeppendenvt and of depe.nden.t

investment proposals. We shall consider as independent projects, after

Lorie and Savage ([1], p. 229), those for which "the worth of individual

investment proposals is not profoundly affected by the acceptance of

others".

In this and in the following chapter we shall be concerned with

optimal allocation of resources among independent proposals, while in

subsequent chapters, optimal capital allocation for dependent projects

will be studied for various problems in the context of transportation

network synthesis.

Special cases of the capital allocation problem have been studied by

Lorie and Savage [1] for the case of independent projects. They first

consider the problem of allocating a fixed amount of money among competing

alternatives, each requiring a given capital outlay in a single time

period. The objective to be optimized is the sum of the net present values

of the investments (i.e., the algebraic sum of positive and negative costs

flows discounted to the present, using the firms "cost of capital" as- the

discount rate). Their proposed solution method is based on ranking the

Although the discussion in 0hit chapter is in terms of money allocation,

it is in fact applicable to rl 1 ocat'on of a variety of other scarce resources.

?9
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investment proposals in decreasing order of present value per dollar of

outlay required, and accepting them in that order until the fixed budget

is exhausted. They do not, however, deal with the ranking of various

combinations of projects and therefore their method does not guarantee an

optimal solution.

Lorle and Savage also consider the case where projects require capital

outlays in several time periods, and they propose a method later shown by

Weingartner (2] to suffer from several serious defects. Weingartner in

[2] identifies capital rationing as an optimization problem and develops

an integer programming model. This model, for the single period case,

corresponds to the Dantzig formulation of the (0-1) /nap6ack problem, [3].

The model employed by Weingartner in the multiple outlay case corresponds

to the (0-1) rnutti-dimen4.onat tnlp6ackz problem (i.e., the knapsack prob-

lem with restrictions on weight, volume, height, etc.). Traditionally,

the knapsack problem has been solved by dynamic programming and most

recently by an enumerative technique developed by Gilmore and Gomory [4].*
For the multidimensional knapsack problem, Weingartner and Ness [5] use

a recursive relation to solve the complement problem (where projects are

successively eliminated instead of accepted) and have reported interest-

ing computational results. Shapiro and Wagner [6] have also studied

these problems, demonstrating their connection with renewal problems formu-

lated by means of recursive expressions.

Cord, [7) formulates the single period problem for the case of

uncertain returns, and seeks to maximize the total return on investment

while maintaining the average variance for the total investment within a

certain predetermined value. Cord uses the method suggested by Bellman

[8] of incorporating one constraint into the objective function by means

of a Lagrange multiplier and then, with a single constrint left, applying

the dynamic programming solution of the knapsack problem. A discussion

of the drawbacks of the method, and the example problem of Cord, may oe

found in [9].

Finally, we point out that the present discounted value used by

Lorie and Savage and by Weingartner has been a controversial issue due

to the interest rate or "cost of capital" employed to obtain such dis.-

counted values. Baunol and Quandt [10] have indicated the serious
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difficulties that this approach entails, and hdve suggested an alternative

objective function based on expli:it discount rates and subjective utili-

ties. Throughout this work, we shall assume subjective utility functions

to express the corresponding figure of merit of the models to be derived.

•.2 THE VARIOUS CASES OF INVESTMENT DECISIONS

We shall consider various cases of investment decisions on

independent projects confronting a firm or a government agency. We shall

derive programming models in each case which may be interpreted as network
flow problems on capacitated networks, with the additional constraint that

flow on a subset of the arcs must be either zero or the upperbound on the

arc. The solution techniques provided are special cases of the branch and

bound algorithm presented in Chapter II. The problems to be analyzed and

their characteristics are the following:

i) The capital investment problem requiring cash outlays in

various time periods for each project is formulated as a

maximum flow problem on a single-source single-;ink capacitated

network, where flow on th.e arcs represents cash flow and tne

flow on the arcs emanating from the source is restricted to

be either zero or at upper bound. Its analogy to a special

class of plant location problems is indicated. The branch and

bound algorithm, as adapted to the problem, permits the use of

the rounding operation; furthermore, the solution of the linear

prograffiong problem, associated with each node of the solution

tree may be obtained by simple inspection.

ii) The (0-1) knapsack problem is then considered as a special

case of the previous problem. The solution proposed by Lorie

and Savage (that of maximizing net present discounted value)

is shown to represený the root node of the branch and bound

tree.

Next part will be devoted to analysis of multistaged

resource allocation problems where the horizon and staging

are assumed to be given.
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iii) The fir-st ot these peoblems to be considered is a capital

budgeting problem requi•lng a single costs outlay per project

and subject to capital rationing at each period; but the cash

outlays, and thus the Investment decision, may be deferred to

a late,, period.

The resulting model wni:h we shall call the iiiu.WL-

kznapaazk problem is studied, certain of its properties deter-

mined, and finaily an equivalent network flow model on a

bipartite graph is derived whico resembles the fixed-charge

transportation problem considered in Chapter VI, The branch

and bound tekhnique as applied to the problem, permits the use

of the rounding operation; the linear program to be solved at

each node of the solution tree is a capacitated transportation

problem with surpluses and deficits and with certain routes

prohibi ted.

iv) Finally, a special type of multi-knapsack problem is considered

in which all items (projects) must be assigned to knapsacks of

given capacity so as to minimize the number of knapsacks re-

quired to adequately allocate the Items of the problem.

Problems iii) and iv), although presented within the framework of

capital budgeting, arise in a variety of fields and in particular two such

applications to optimal allocation of computer system facilities are

discussed in detail

3.3 THE MULTIPERIOD CAPITAL INVESTMENT PROBLEM

Consider a govr.,.-ment agency or a corporate division confronted with

the problem of allocating a multi-staged budget with ceilings on each stage,

among a set of independent projects requiring capital outlays in various

time periods (Problem i) Government agencies typically face this prob-
lem when the available amount ot capital is determined exogenously by

legislatire appropriation or by government budget pianners. In the case

of a corporate division, cop managemient may determine the budgets and

simultaneously cut ott the division from acquiring additional funds from

the capital market
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Let Bi, j=l,. .,n be the budget ceilings at each stage or time period

and let aij > 0 be the capital outlay required by project i (itl,...,m)

at time period j. Assume a c2rtain utility f.I associated with the*

acceptance of project i , the fi might for example be subjectively deter-
mined by the decision maker. A set of projects must be selected for

investment so that the total utiliýty is maximized while maintaining the

capital outlay at each stage within the corresponding budgetary ceiling.

We derive an analytical model by considering a bipartite network

G = [Ni, N2 , A], where N1 is a set of m nodes each representing a project
proposal, and N2 a set of n nodes each associated with one of the stagesn
considered. Let E a be the "dermand" or- input associated with node

j=l

i F N1 and B the "demand" or output associated with node j E N2 . Let

xij, the flow on the arc (i, j) E A, represent a capital outlay, and

capacitate these arcs with the upper bounds a ij. Then the capital allo-

cation problem defined above may be expressed as follows: find a flow

pattern on the network so as to

r
P' :Maximize z E fI Yi (3.1)

ill

m
Subject to Z x < 5 B , j=l, .,n (3.2)

n n
Y. X1 Y I E a 1-1 . ,m (3.3)j= J J=1 j "

"0 a ,J (K,j) c A (3.4)

y1  integer (3.5)

where the y Ire decision variables assoc'ated with each node i N r,

which may take or th'. values 0 or 1 according to whether project i is

fi would represent the net present value of irvesting inl project i,
discounted by the aPpropriate ratc of initerest, if the total present

value approach of Lorie and Savage is -'.pted.
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rejected or accepted tor investment. (By summing (3.4) over j and

comparing the result with (3.3), we obtain Y, a g aii; and since
jzl aI3 ' l

by (3.5) yI is restricted to be integer, it follows that the only possible

values for y, are 0 or 1.)

Constraints (3-2) restrict the capital investments incident on node

j to be within the available budget at period j. Constraints (3.3) indi-

cate that if project i is accepted (yi Z 1) the sum of the flows leaving

node i must be equal to the total investment required for that project

over the entire horizon Coupled with the upperbounding constraints (3.4),

this condition forces the flow on arcs emandting from i to be at upper
n

bound as expected. By the same reasoning, if y1 = 0, thenj £ xij = 0 and

the flows on the arcs x are at zero level,

Observe that the capital budgeting problem as interpreted in this

network flow context corresponds to a special class of plant location

probtlems [11), £12]; however, in our problem we are maximizing, the flows

from plants (projects) to destinations (time periods) are capacitated,

and there is no explicit participation of the xi, in the objective

function.

Note that relations (3.3) permit P' to be exclusively expressed in

terms of the set of variables xlj, as follows:

m n
P Maximize z = E Ci (3.6)

i-- 1 l xi(.
m

Subject to E xl ( B. ,jl,..,,n (3.7)

0 < X 5 al ,, (i,j) c A (3.8)

n n
Y, x, / E ai Integtr (3.9)

n
where c1  f / E a., represents the total utility of project i per

Jai

unit of investment, and thus all arcs emanating from the same node I
incur the same cost c,
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We observe in passing that if constraint (3.9) is deleted, the

resulting problem may be decomposed into n mutually independent programs
n

of the form Max z £ i E xI : Ba 0, each1'c i-i 3 Ii ' j-a3' 'ec

one associated with time period j; the solution of which may be obtained

by simple inspection as will be shown later,

Before proceeding to develop a solution technique for problem P. we

shall show how the prab&em may be formulated as that of obtaining the

maximum flow that maximizes total utility.

The bipartite network G with multiple souces and sinks may be

transformed into an equJ'alent network with a single source and a single

sink. This may be done by adding artificial nodes s and t, and artificial

arcs ( V,i), E i N, and (j,t) * j c N2 , with the following associated
n 2"

values: c5 ) 0, U51  £ a j and c = 0, uj Z Bj; where us1 and
J-1 ut Bsi ujt

denote the upperbounds on the respective arcs. Furthermore, we shall

require that flow on a-cs (s,i), i e N, be either zero or dtherwise that

it saturates the arc. The associated network is shown in Fig. 3-1. The

first number on each a-c represents cost and the second represents arc

capacity.

0, E a c~aln c !,2a0l

Za.•

cm am1n

0, " FG am2 n

FIG., 3-1
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The problem therefore may be expressed in terms of network flow

theory as an anaoy6J6 problem: find the maximum flow from s to t that

maximizes cost on the network of Fig. 3-1, as well as its distribution

pattern, such that arcs (s,i) are either not used or saturated.

The highly combinatorial nature of the problem does not permit

network flow theory, in its current state of development, to provide a

labeling technique (primal-dual method) to cope with such a problem.

However, since a duality theory for discrete programming has recently

been developed by Balas (13], a generalized concept of complementary

slackness may be derived for this class of problems and thus a generali-

zation of the out-of-kilter method [14] for networks with bivalent arcs

may be developed. The author has been working on such an approach, but

is unable at this point to present final successful results.

3.4 DEVELOPMENT OF A SOLUTION METHOD

We shall adapt in this section the branch and bound algorithm

presented in Chapter I1 as applied to the solution of problem.P. The

notation to be employed complies with that used in Chapter II. We shall

first define the sets S1 , T1 and 01 as follows:

S I 1E 1 x13 " Bit 0 < xij < aj] (3.10)

T1 [xj /n xW * 1 ate." integer, xt3"O or ajj. *(ij)] (3.11)

0!" 1 S• nT1 (3.12)

We observe that the sets thus defined satisfy the assumptions made

in the original development. The set SI is a closed convex set in Em+n

obtained as the.Intersection of the hyperplanes (3.7) and (3.8); It is

also bounded since each variable x11 , from (3.8),.its bounded above and

below. T1 is a non-empty set in the same space asS 1 (e.g.

xii a 0, V (1, J) c T1 ), and is also finite since xtj - 0 or a1 1 .

Finally, from (3.12) 01 is finite, since T1 is finite.
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Note also that since a13 ? 0 and B, ? 0, at least a feasible solution

exists, namely, the 6WuA 4uo, I.e. the policy of zero investment; and

thus an optimal solution always exists.

Bunching Openwtion. Given a certain node.o of the solution tree

with associated sets Re and S£, the branching is defined by their inter-

section with the sets

vr C kx / Ykj Z O, *.]J> y k 0 (3.13)

vtC~l r Cxij /Xkj z akj jJ l > Yk = 1 (3.14)

for a given i k. The sets thus defined satisfy the sufficient conditions

to form a partition of at, (cf. theorem 2.1):

VL,rnI ,t•r+i - [xij / Xkj - 0, Xkj ' akj, 1) * * (3.15)

vt,rU ',r+1 I[xi, / ki = 0 or akj, 1) (3.16)

and since S1 is a subset of Ql (by branching operation) and from

(3.10) to (3.12), the variables xkj in femay take on the values 0 or aki.

Thus the intersection of R twith (3.16) is Q and the second condition for

sufficiency is also satisfied.

Finally, since at each branching operation n variables xij are set

either to zero or at upper bound, and since the number of variables is

finite, eventually we will obtain a terminal node t with St = Qt con-

taining a single element of the domain n and hence all feasible solutions

to P may be enumerated in similar fashion by developing the entire

solution tree.

3.5 THE AUXILIARY PROBLEM AND ITS SUBALGORITHM

At each iteration of the branch and bound algorithm, associated with

each newly-generated node Z of the solution tree, a continuous uxi.LUny
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puobtem At derived from P must be soived. Denote by 10 CN! the subset

cf nodes of the network G toy which y, O, (le., nodes representing
rejected projects); by 11 CN, the suDiet of N, associated with Y1 a 1,

(accepted projects); and by RN ; 41 " 1. '' " ,' the subset of projects

that remain "free" to be accepted or eeje:ted at this step of the solution

process, Then Mhe dUKlha'y p~ob!em At ta W.s the ftm

m

Subject to m B j0 I, .,2n (3.18)

i~ixi - j "°

xiJ~~ ~ ~ u ij aij. I I Tepolm(.7,(,8 , ( V ij 3.19wihtermnng)

n

""a £ / a. a 0 , t c Io (3.20)

Yi I~ A l =

Subec to ij/£ E Ix (3.231/

jII jCl a1

This prob~lem is a !near program whose soutlen may be obtained by
inspectl~in, Indeed, from (3o20), 0l , i c o From (3.21) and (3,19),

tXii* alj, 1 c I The prob'em (3.17), (3,18), (3.29) with the remaining
free varlables r.1d• De decomposed into ti muwtaoiZ •nde, cnder.{. prograirs of

the form:

Ma•Imize z - i.Z c. xl (3. ?2)

Subject to }i • '. g (3.23)
icRl 1.; -

0 -" lj <aij 3.24
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where • . - E aijo We may assume without loss of generality that
J i el I

the indexing of projects i E N1 is done in decreasing order of their

utility per unit of investment ci, so that c I _ > cm. Under this

assumption it is obvious that the optimal solution to (3.22) - (3.20) may

be obtained by sintply setting the variables x.. equal to their upper bound
13

in the order of the index i until the budget 9 . is exhausted. If

E a > l, then one single variable will take on a value lass than
iENl

its upperbound, The problem (3.22) - (3.24) may be solved for all j in

this fashion. Thus the optimal solution co the auxiliary problem A will

be x a a f < 6., zero otherwise and:
lj 13f 13- 3

0 ,if r Io

ara , if r E1 1

, r-l , r *
Xrj= ar , if E x ij < •j and E x. < 5 r e R, r > 113 i=l i 3(3.25)

r-1 , r *
j- x.. ,if E < . j and E x > 9 r F Rl r > 1

i=l=i

0 if E, xij ? 9j r E N, r > 1

The objective function will have the following value:

E f I+ F cI xij (3.26)

Note that if for any problem 9 < 0,the corresponding A. is
infea;ible and the node of the tree may be excluded withcut furthe-

computation.
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Rounding opexatn. Observe that from the optimal solution (3.25),

(3.26) to A,, and rrom (3.9), the set of y, may be determined. If all

of them are integer, then (3 25), (3.26) constitute a feasible solution

to problem P. if this is not the case, then a feasible solution to P may

be obtained without any additional computational effort by simply setting

Yi = i if Yi z 0 or I

i y O(3.27)

0 ,f 0 < y < I

or equivalently, if 0*< xij < aij, then set xi3 = 0 for all j c N2,

otherwise set xij = x ij. The value of the objective function is given by:

Z W = E fi + £ Z c I. (3.28)iellI idl j

The solution thu; obtained is feasible for P; note that in obtaining

Xij, the values x* have been reduced if changed at all, hence constraints
13.7) and (3.8) are still satisfied. Also from (3.27), constraint (3.9)

is satisfied and the solution is feasible for P.

The rounding operation Jefined by (3.27) ind (3,28) will .efore

permit us to perform rejection of certain branches of the branch and

bound tree, since (3.28) constitutes a lower bound on the optimal

solution to P.

3.6 THE BRANCH AND BOUND ALGORITHM

Having shown that the assumptions of the branch and bound algorithm

are satisfied and having developed a subalgorithm for solution of the

auxiliary problem, we may now proceed to establish the solution ,ui.thod as

applied to our capital budgetin• problem. Note that we have simplified

the statement of the algor~thm kcf. Chapter 11) and also have expressed

it in tni;s of a maximization problem.
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STEP 1. Set i -, genefte node I b, o.ving A, (i.e., P without

constra'n.s (3.9.), and '-c z , be the optimal solution.

From ,3 9) 3bt•,n y,. If a,, Y, are 0 or i, stop; the solutionr *

is optimal Othe-htse . node 1 with U1 - z . Round node 1

to obtain (0, •,) Set L1  z. f - U,. stop; the rounded

solution is opt.ma!. Otherwise L, < 9V Set i = i + 1 and go

to step i.

STEP i a) BRANCH. Bnan f,'n bounded node Z. Select one *k having

a fractTonal di ue. C'eate noaes r and r , 1 and directed arcs

R(,r) and 'Z,r-,). Solve prob'em Ar with Yk 0, adding k to

set 1 0 nd solý,e problem Ar.i with Yk = 1, adding k to set I,.

If z Or Z I(r") < L_1 , .4tejecX the corresponding node. If

one is infeasible, zx•idz the corresponding node.

b) ROUND. Round nodes r and r i 1.

c.1) BOUND FROM BELOW. Set Li max [L 1 l i(r), 2(r+l)].

Reject all nodes with z < L

c.2) BOUND FROM ABOVE. Select node t such that z'() =

max {z (K)), for current terminal nodes. Upperbound node t withk
Ui z (t). If Li z Ui, stop; the feasible solution that provides
the lower' bound is optimal. Otherwise, LI < U . Set i = i + 1

and go to step i.

At each brdnching operat~on, one of the current functional y1 must

be selected to take on the values 0 and 1. Tnere may be several such

variables and in general there is no clear cut selection rule that would

guarantee the faste-t :onvergence to the optimum. Usually certain heuris-

tic rules are discoered when .sufficient computational experience with the

algorithm is available. Our experience with problems solved by hand has

indicated that selection of tne fractional Yr having the largest total

investment X arj tends to result in infeasible nodes for the branch yr = 1,

thus reducing the number of terminal nodes for which data must be preserved

and resulting in a redtuced time of computation.

I



42 CAPITAL INVESTMENT ON INDEPENDENT PROJECTS

3.7 SOLUTION OF AN EXAMPLE PROBLEM

Consider as an example the problem given in Table 3-1, taken from

[2), involving 10 projets and 2 stages, The budgetary ceilings are

B1 = 50, R2 £ 20.

Project f a I Project
No I il a12  Ea- - No f1  a 1  1 ai2 -3 ' 3 j 1 3

1 15 6 2 1,875 6 40 30 35 0.615

2 17 6 6 1.417 7 12 18 3 0.571
3 15 6 7 I,154 8 17 54 7 0.279
4 12 6 6 1.000 9 14 48 4 0.269
5 14 12 3 01933 10 10 36 3 0.256

T,'3LE 3-1

To generate the root, (node 1), the auxiliary problem A1 must be
solved. The solution is obtained for each time period by neans of
expressions (3.25). Here 10 = II t and B . The snlutions are:

xil= [6, 6, 6, 6, 12, 14, C, 0, 0, 0]

xi 2 = [2, 6, 7, 5, 0, 0, 0, 0, 0, 01, thus

y, [1, 1, 1. 11, 12, 14, 0, 0, 0, 0], z*(1) 47 + 30.82 77.82
T7 TS 6"

and by rounding y1 we obtain

i [1, I, 1. 0, 0, 0, 0, 0, 0, 0], 2(l) -47

Therefore, L, 47, U 77.82 and node I is bounded.
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The subsequent iterations and their pertinent data are shown

Step Feasible nodes Excluded Rejected Lower Upper
i F( nodes nodes bound bound

L i Ui

1 l* 47 77.82t

2 3 2 47 77.19

3 4 ,5 59 74.46

i C, 6 73.85

5 5 8 ,9 7 70 73.59

6 5 ,9 ,10 11 70 73.13

7 5 ,9 ,13 12 70 73.10t

8 9 13 , 15 14 70 72.96

9 9 , 13 , 17 16 70 72.78

10 9 , 13 18, 19 70 71.68t

11 9 20 21 70 70.56t

12 23 22 70 70.54

13 25 24 70 70.51

14 27 26 70 70

• •bounded node

t search on a new branch uf the solution tree

TAP;LE 3-2

in Table 3-2 and the actkal soiution tree in Figure 3-3 A total of 27

nodes are generated although only 20 need be evaluated by means of

expressions (3 27), (ThE infeasibility of excluded nodes is detected when

A j < 0 for any j) The second column of Table 3-2 indicates the number

of current terminal nodes for which information must be stored for later

use. Note that at any one time no more than three such feasible terrvinal

nodes exist
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Fig. 3-2 gvaphically snows the effectiveness of the rejection rule.

The difference between the lines a and b may be attributed to the selec-

tion rule employed in .hao•;ng the ffa:tlonal variable y, to be fixed at

each iteration. The difference between lines b and c represents the effect

of the rejection rule, which in this case not only dampens the growth
rate of the set of feasible nodes, but In a certain interval makes the

size of the set decrease with the number of Iterations, Finally, note

that since the number of feasible terminal nodes at the end of iteration
14 is only one; this indicates that the optimal solution, accept projects.

1, 2, 4, 5 and 7, is unique.

Number of

nodes 14

12

10 a

8 b

6
4

2 c2 / , Step i

0 2 4 6 8 10 12 14

a : termindt nodes of the solution tree

b : terminal nodes excluding infeasible nodes

c terminal nodes excluding infeasible and rejected nodes

FIG; 3-2

In table 3-2 we have indicated the steps at which a search along a new

branth of the tree is started This type of information is valuable in

the context of computer implementation of the algorithm. In fact, at

each iteration, a search over all currently feasible nodes must be
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z "77,82

Y6 / zY 6 2l

z -77 19

E

z 17310 z -74.46

y8 :O 8' s 05 0

z =72.96 z=69 23 z =73.85

i=47 6 -!,=59 =58
E R89 =0 Y9- Y3=0 =

z 72.78 z -3S.08 z =70.5 z =73.59
z=47 7 =14 z0 8 -&,=56

R

z :7,4.38 . z-70 54 z=67.56 z =73.13

R i=42 R i=70 E R z-56 z=58

z 69.-?0 Yqo94ý Y40: 4z 1
i=47

1 :70 , z -71.68 3

z z=70 1'60.5 1
z:70 v /58

opt ,run

F 1 3 -3 Sje!, lut', rn ý,ee
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performed to determine the node from which to branch next: max {z*(k)}.

kcF(i)

This is essentially an optimization p-oblem, solved by a table look-up

equivalent to an exhaustive search. If at each iteration the node numbers

of the best and second best (or as many as desired) z values are stored

separately, and updated at each iteration, the number of table look-ups

is reduced. It is easy to verify that 3 table look-up is not required

until after the number or tree branches so far developed at least equals

the number of decreasingly best nodes stored separately At this point,

the table look-up would peadice the next set of decreasingly best nodes

needed to begin the next -y,,e of the operation.

In the example considered, if the three values with the best z

values are available, the first table look-up would be required at itera-

tion 12 to determine that node 23 should be the one from which to branch

next. At that point, of course, the table consists of one single element.

It may be worthwhile to point out that the dimensionality of the tree

depends largely on the numbe," of projects considered rather than on the

number of time periods; the latter only implies extra computation of ex-

pressions (3.25) for all time periods at each node of the tree. That is,

the total number of nodes of the final tree is eApected to vary slightly

as a function of the number of time periods considered.

Excellent results have been obtained with this branch and bound

technique. For a resort on this computational experience, the reader is

referred to [15].
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CHAPTER IV

3INGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM

4.1 THE (0 1) KNAPSACK PROBLEM

The mult'-dimensional knapsack problem studied in Chapter III, for

the special cases n = 1 (one single period) corresponds to the (0-1)

knapsack problem formulated by Dantzig. As we mentioned before, this
problem has traditionally been solved by dynanic programming. G1 Im~re

and Gomory fl] have recently developed a theory for kntalpAackz 6unct,•.k

(i.e., the u stm;u, :olution z°(B) is a knapsack function of the budget,

which is considered as a parameter). Although they nave presented al-

oelthins for the knapsack problems without upperbound on the variables,

for the (0-1) case they have only indicated how an algorithm based on

dynamic programming should be derived to solve the problem for various

values of the budget.

In thiý section and forthcoming sections we shall study some

importdnt economic interpretations related to the dual of the knapsack

problem. In this context, we shafl first relax the discrete restriction

on the variables, and later we shall also form.ulate the dual of the ori-
ginal kriapsdck problem, making use of Balas' discrete p-ograqiining duality

theory. Two branch anCil bound solution methods wll be proposeJ based on

the general algorithm of Chapter !.. The f st method corstitures a

specidl case of the algorthm developed for the t.,•iti-dimensional knapseck
problem in Section 3 6. We shzil discuss the sim;plifications resulting

,noin assuming. an 1lnvestuent horizon of one tifme Deriod. The second al-

gorithm, a•'•thugh ,t branch' d..d boLnd solution method complying wit.h the
general theory of Chapter i.. is closely rel ated to the . C ',i"tm

of Fala [2] in atdt;t+on, this aIgor;thm is ,Ixiw- ca : , the s_ se

Indicated by I hb iah [3], .2.., the tree s, mut !-weou.' 1Y so!ves th:

knapsack pyoulei: tor -driow \a 31Ces r' tie -rtdc '



50 SINGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM

4.2 ECONOMIC INTERPRETATION OF THE DUAL LINEAR PROGRAM

By collapsing the index j in the formulation P of Section 3.3, the

knapsack problem of Dantzig may bL modeled by the following discrete

(bivalent) prograwm'ng problem:

m
Q : Maximize z = c x (4.1)

m
Subject to Z xi < B (4.2)

0 S xi 5 a, '*.1 (4.3)

x= 0 or a, 9 *i (4.4)

where (4.3) is obviously redundarnt, but has not been removed here for

reasons that will become evident. Let us assume that constraint (4.4) is

relaxed; that is, projects may be accepted for which the capital outlay

is cly A fractinn of the total capital required, a1. Under this assump-

tion zhe resultiiq problem, which we shall denote Q', is a linear program

whose associated dial program is the following problem D':

m

D' : Minimize z' - B v + a1 u1  (4.5)
i=1

Subject to v + ui >ci (4.6)

v, u1 . 0 , (4.7)

where v is the dual variable or ahadow ptice associated with constraint

(4.2) and the u4 the shadow prices associated with constraints (4.4).

Let i assume that ci = fi / a, > 0, and that as before, the ci are

ordered in decreasing sequence, (i.e., c1 > c2  c ... , Cm). Under these

issuinptions it is obvious that the optimal solution of Q'may be det'trmined

recursively by
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! J, :ifI a, 5 B

B if a! >B,

ry 
r

ax < B and E xi < B, r > 1 (4-8)
ri=-- I iI

B- r-I * r-1 * r *
Xr = B -£ xi , if Z x. < B and E x1 > B, r > I

0 ,if J , x> B, r :1 1

Denoting by r s th'. index of the last accepted project, we see

from (4.8) that only x5 may be less than as, and thus project s is the

only one partially accepted. The rest are totally accepted if r < s or

totally rejeLted if r > s. From (4.8), the optimal solution will satisfy

(4.2) as a strict equality (the constraint is active).

If x and v , u art optimal solutions in their respective programs,

from duality theory of linear programming the following comptFmenttwy

taicknus conditions must be satisfied:

v [B- x.] 0 (4.9)
i11

ui [ai x 0 (4.10)

x [ui * v - ci] 0 (4.11)

* ~m
From (4.9), if v > 0 then E, xi B, which is the case under

i2,

consideration. Ther we conclude that for an optimal solution, the budget
*

ceilin•g is a scarce resource and v may be interpreted as the value or

imputed rate of an additional dollar added to the budget. Note that this
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rate is always positive in the linear programming case, and its value will

be deermined below.

Vrom (4.10), u. 0 for rejected project!ý, and for positive uI the

project is accepted. The values u1 represent the internal rate of return

of one dollar invested in project i. From (4.11), for accepted projects

the following holds:

uI C Vt - > 0 :C I S (4.12)

We shall now poceed to determine the optimal solut=on v , u to the

dual problem. For an cptimal solution, both objective functions are

equal, and taking into account the fact that x= 0 and u= 0 for i > s,

(i.e., for rejected projects) we obtain:

si1 ,- •E
c1 aI + cs (B- E a,) = B w ai u1  (4.13)1-l 1=1 1=I14.3

By substituting (4.12) in (4.13) and solving for v the following condition

results:

v c (4.14)
s

and thus the optimal value of an additional dollar added to the budget is

equal to the net present value per dollar Invested of the last project

uccepted for in-estment In the optimal solution to Q. Finally, substi-

tuting (4.14) jack in (4.12),

u1 =ci -c 5 , i.s (4.15)

which will be non negative since we have assumed c1 z c5 for i < s. The

rate of return of one dollar invested In project, I, I . s, is the

O • m*Obvloously v -- 0 for the trivial case E < B.
t-1l
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dif~erence, if any, between the net present values per dollar invested of

project I and project s (the mafginally accepted project).

The values u, suggest a natural way to define Investment priorities,

Lori. and Savage (4] ppopose a ranking strategy based on decreasing net

present values per dollar of outlay, that is in decreasing order of their

ci. Thus, the ranking suggested by (4,15) and the one of Lorie and

Savage would result in the same projects selected foy investmenti. We

emphasize again that thib holds only for situations in which the marginal

project accepted may be accepted as a fraction, We shall consider now

the dual of problem Q, for whi:h attempting project divisibility is an

absolute 6au. pa

4.3 THE DUmL OF THE DISCRETE PROGRAM

In this section we shall study the dual of the all-biwa'cnt program

Q based on the duality theory of discrete programmina, [5]. We shall re-

concile this theory with the dual program suggested by Weingartner [6]

for the single period inestment problem.
Let us consider Q subject to const.'aints (4.2) and (4.4) only, and

drop the redundant constraints (4.3) from further consideration. The

dual of such program is the following max-min problem:

D : Max Min z' t B v - x

Subject to v - s- c (4.16)

v >0 , 01 :Ocr a

S unrestricted

Since the slack variables s. are unrestricted, they effectively

nollify constraints (4 16) and problem D may be rewritten as
I- -

D Min B - Ma _T ( ) /C 0 (4 17)
v ! I;s i-1 I

to
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where so - {A/ x; z o or a, Y As suggested by Balas, the solution of

problem Q may be obtained by solving the equivalent problem (4.17) using

the partitioning technique of Benders (cf, Appendix A), thus obtaining
the optimum x. and v . However, we shall assume here that an optimal

solution x to problem Q is already available (obtained for example by
the branch and bound technique cf Section 3.6).

The saddle-point theorem of Balas guarantees that if an optimal

solution x , z , to Q exists, then an optimal solution v , s , z' to D
*t w

exists, with z z z'

THEOREM 4.1 ] CompteZmeetoy Siack eW. 16 z and %, z ate optjmt

.6o~uona to Q and D teapective•Iy, then
U S

[8- X 0 (4.18)

Proof: Since by the saddle point theorem z z' , we have

cixi=Bv E-l( xC
i-•l l1 1 =1

or 0v [B- m ()
Jil1

So for v > 0, the bulget is a scarce resource. Alternatively, ifw *

the budget is a free good, T xi < B and therefore v - 0. The dual
jai

variable v may be interpreted as in, the continuous case: it is the value

or imputed rate of an additional dollar added to the budget.* *

Once an optimal solutlon x , z to Q is avail'Ale, then the optimal

dual variables may be determlned as follows: If I xl < B, then from
tti

theorem 4-1 it follows that v • 0 and thus Si ci
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If on the other hand, Z x, z B, then by substituting xI for xi in

D we obtain the following square system of equations of order m + 1:
* m • *

By v S x z (4.19)

v' - si -"ci ' /i(4.20)
k

v S 0 (4.20)

LEMMA 4, 1 FoL an opVt mat 60eoti.X)4 X. to Q, at,66y.•g E • , E xthe

equotion (4.19) Z Ledundant,I

Proof- Multiplying each member of (4,20) by x. and suiming over I we have

v E xi - £ si x-• 1 ix
1=1 i=l *i~l

M *

but this expression, under the assumption that Z x1  B, is equal to

(4.19). 1=

It follows from the lenma that the rank uf thý.• system (4.20)-(4.21)

is m (the system is triangulhr), and thus v may take any non-negative

arbitrary value. *

We shall select for v the value cs where s is ag6ln the project

among those acc2pted which has the minimum net present value per dollar

irvested. This choice will insure that all accepter' projects have non-

negative benefit, that is, c1 - v > 0. Thus, denoting by I the set of

rejected projects and by I a the accepted set, we have

-SI Ci Cs 0 1i Ia

(4.22)
*

i.
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Observe that it may still be possible that for a rejected project

ci > Cs implying that this project has a positive benefit (c1 - c> 0).

We may coritrast (4.22) with the linear programming -,:: studied in

Section 4.2 where the following conditions were satisfied:

c c >0, i E 'a

(4.23)
c I cs 0<0, i•|

Thus in Lhe integer programming context, as Weingartner remarks,

rejected projects for which ci. - cs > 0 are essentially taxed or penalized

to eliminate any profit on them, thereby preventing their acceptance.

Finally we shall reconcile the results of the integer duality theory

deyeloped above with Welngartner's "alternate dual values" approach to

establishing shadow prices in the integer capital investment problem. He* *t

assum ([6], pp. 103-106) that an optimal solution X*, z to the primal

integer program Q is availible (i.e., the sets I0 and Ia are given). He

evaluates the "aiternait. - ;al varlables" by solvinq a linear programming

model constructed in such a way that it allows negative benefits only for

rejected projects, The model he proposes, re-expressed in our terminology

and notation, is is follows:

w : Minimize 2 - Bv + Z UI xU
iEIa

Subject to v + >ci , C I a (4.24)

v +uI. ? ci, I c I (4.25)

V, V1, Y1 > 0

where the benefit (c -") is ýiven by u > 0 for accepted projects and

by (ul -i) for rejected projects. UIhder the assumption that a, > 0 aid

4t
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ci> 0 and that 'a f 0, Weingartner's probl ,n may be solved by inspection

as warranted by the following theorem,

THEOREM 4.2 The , , u1, y ,:2)t•,.c-.tz ar ;pt,(Ma tou.tion to w

4- a

Proof: For any v > 0, u, and y, i e exist satisfying (4.25) as a

strict equality without alte-'ng the value of the objective function. Now

consider consttalnts (4.24):

a) v 0 0 , ;-"c 's not possible since ! is assumed

non-empty.

b) if v 0, then u 0. (If x). 0 0 for a subset of Ia, then

ci -0, or else the solution v , u1 is infeasible.) Assume also
V* + u* > c , i E Ia. Then each ui may oe decreased without

vic~ating the constraints (4.24) but with a decrease in the

value of the objective function. Thus v + u= ci.

c) v > 0, u1  0 for some i E I and u. > 0 for the remaining
ft a,

i E I . Assume also v > ci for all i such that ui 0 O. Then

v may be der.reased without violating the constraints, causing

the objective function to decrease Therefore v = c. If v
u. >0 still holds for i such that u, > 0, then ui may be

decreased without violating the corstraint, causing the objective
* A

to decrease Thus v tU = ý1" Q E D

Furthermore, by taking the dual of w it can be sno%;n that the
optimal solution 2 to w is equat to the assumed known value z of the

integer problem Q. Thus the solution of w is reduced to solving the

system of equations:
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Bv + L Vi x1 ,

By i*• z I az (4.26)

* *

1t " ¢1 ' 1 • (
V ti., L. a

* a a
V 0 - Y, ,l 0

V jui, Y1 ?0

This system is sol-ed as follows: If Z x B, then ,4.26) is
1E:Ia

ft 
*

redundant ; thon by selecting v cs arbitrarily with cs being the

smailest c1, § - ! , the solution is

u c- c s 0 1 Ia (4.27)

'u1 Y 1  c " Cs >0 , 1 0o
<

Cwpai•nqi now the results of (4.22), obtained by direct exploitation
of discrete duoliity theory, with (4 27), derived from Weingertner's in-

tuitively cocistructed model w, we observe that the) are the sae, thus

establishing the eqmivalence of both approaches in dte-mnln% z sytem

of shadow prices for the capital investment problem under c~nsideratioo'.

If z xt < 8 solution isv -O, i ct ic I - i c i 16%
iel.



SINGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM 59

4.4 SOLUTION OF THE KNAPSACK PROBLEM

The branch and bound algorithma of Section 3.6 may be directly applied

to solve the knapsack problem as formulated in problem Q. However, its
application to this single period investment problem is totally deter-

ministic in the sense that when a bran..-hing operation is about to take

place from a bounded node, the solution of the auxiliary problem for that

node contains only one varialbe with 0 < X* < a .. Hence this particular

variable must be a 6v~tioi.Z be fixed to i,'.s only possible values x. 0

and x 1  ai in order to continue the execution of the algorithm.

To illustrate its application and to compare it with the alternative

algorithm of Section 4.5, consider the follewing problem.

EXAMPLE

Assume that the ten projects of the examvple in Section 3.7 are

considered for inivestment with the same payoffs and with the same total

outlays required except that these outlays trist be investel in a single

time period. Table 4-1 shows the pert~nent data. The projects are again

oru~red in decreasing values of their c..* The budgetary ceiling is B = 70.

To init-ialize the problem and thus generate the root-node 1, problem

Q is solved ignoring constraints (4.4). We observe in passing that the

solution proposed by Lonie and Savage corresponds to the solution of the

auxiliary protlem associated witt,. the root of the solut~on tree. This

solution is z '179.15 and x [8, 12, 13, 12, 15, 10, 0, 0, 0, 0],

whe-re x 6 10 is the only variable root zero or at upper bound; thus

Project f a Z rjetj li a
Nof I No

1 15 j8 N:? 64 65 0.65
217 12 1.4117 7 12 21 0.b7'

3 15 13 1.154 8 .71 61 I0.279

4 12 12 1.000. 9 i 52 0. 269j
5 14 i5 0.933j 10 1.0 3q 0.2561

TABLE 4.1j
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the branching will take place from node 1 by fixing x6  0 and x6 = 65.

The rounding solution associated with the node is x [8, 12, 13, 12, 15,

0, 0, 0, 0, 0] with i -- 73. The optimal iolutions of nodes 11 and 21 are

obtained after 11 iterations of the algorithm. The pertinent information

at each iteration is recorded in Table 4-2 and the solution tree in Fig.

4-2. We observe that since the rounding operation at node 1 produces a

solution which turns out to be optimal, the tei wong of the solution tree

by use of the rejection operation is very poveful for this particular

example.

"" Rejected Lower Upper
STEP Feasible nodes Excluded nodes bound bound

i F(i) nodes R(i) Li U1

1 1 73 79.15i
*

2 3 2 73 78.71

3 4, 5 73 75.79

4 4 7 6 73 75.69

4 9 8 73 75.56
*t6 4 ,11 10 73 74.73k

7 11 12 13 73 74

8 11 15 14 73 73.28

9 11 17 16 73 73.27

10 11 19 18 73 "6

11 11 21 20 73 1 73

bounded node

Ssearch on a new branch of the solution tree

TABLE 4-2

F,-,.,i Table 4-2 we observe that information fijr no more than two

nodes need be stored at any step of the solution process. The numbter of
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nodes remaining in the feasible set at the last iteration, F(11), Indicate

the number ot optimal solutions. For this egample two st-ategies, both

not exhausting the budget, a-e avvilable, a) accept projects 1, 2, 3, 4

and 5; b) accept projects 1, 2, 3, 5, 7. Note that the optimal solution

has a total utility of 73, as opposed to 70 in the example of Section 3.7

where the buaget ceilings were given in two time periods.

Number of
Terminalnodes

a

b

Step i
2 4 6 8 Ii

a c(i), b F(i) U R(i), c F(i)

FIG. 4-1

In Fig. 4-1, the difTerence between the lines (a) and (b) is fixed

since the branching operation is deterministic. Line (c) indicates the

"umber of terminal nodes to be stored at each iteration The difference

between lines (b) and (c) is the result of the r1,ection operation of the

algorithm. Note that the rate of increase of terminal nodes with number

of iterations perfornied is drastically reduced by the rejec.tion r1-2 in

this case

According to the theory of Section 4.3, the imputed dual prices

would be v 0 0, since the budget is a free good and s, - c1.

I;
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z -79.15
i-73

6 6'65
Z *8.7 2 z":49.37
t743

R

z =75-79 54, z w74.73
JR73 -

A 8-0 z -72- !Z X 5-

, , R ,

z =75.69 z -33-42 6 z -'74
z=73 R /--73

x 9 52 x 4= 12
W4

75,56 z =43,17 z =72.31
9 Z'73 8,

R z =73,28
x1(o=0, X10l'-39 "i=73

z 53 .

z 73 z =73.21
-73 i;473

SE

z -'3r25

i.73

10o-O V;10.39

Z --73 \i473

optimum E

FIG 4-2
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4.5 A PARAMETRIC BRANCH AND BOUND ALGORITHM FOR THE KNAPSACK PROBLEM

This section is devoted to the derivation of an alternative algorithm

for the solution of the knapsack problem. This method, as will be shown,

is a special case of the branch and bound algori -hm of Chapter II, with a

more elaborate branching mechanism, The algorithm has certain features

similar to the so-called mp&,,.t enumet.at.ron methods [7], [8], [9]. The

most important characteristc of the method studied here is that it

possesses the special property that the final tree ccnfiguration cmntairis

the optimal solutions for all similar knapsack problems with largev' bud-

gets than the one utilized to generate the tree. The branching part of

the algorithm is similar to the one employed by Ichbiah [3] on a network

connectivity analysis problem which guarantees the parametric properties

of the resulting algorithm.

Let us rewrite our bivalent linear programming formulation of the
knapsack problem where optimal x° and z0 are sought as to

m
Q Maximize z(B) = c1 x

Subject to E xi < B
lZI

0 <i X a

xi 0 or a '@

Here z°(B) is the t"',,apaact 6fict<.oq co-responding to a specific

value B of the budget. Let k define the sets s,, TI and QI as follows:

s x1 / 0 < X < a,) (4.28)

T1 / i X B; xi 0 or a.) (4.29)

P1 'S T 1 1 (4.30)
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The set S I is closed and bounded in Em; T] is a nonempty and finite

set for B > 0 and thus il is finite.

Btanch•ng Opeuatatorn. Given a certain node t of the solution tree with

associated sets Qt and s£, the branching is defined by the intersection of

the sets

Vt,r = txi / Xk = a (4.31)

Vt,r+I Z {Xi / xk = 01 (4.32)

for a given i = k. The sets thus defined satisfy the sufficient conditions

of Theorem 2.1, as may be easily verified. Also, since at each branching

operation one variable is set to Its only possible values and the number

of variables is finite, the complete enumeration of solutions and thus the

finiteness of the algorithm is guaranteed.

AuxxZ.•taij Pwobtem. Associated with a newly-generated node t of the solution

tree, a continuous problem derived from Q must be solved. Denoting by

Io, Ia, and I the sets of variables fixed at a zero level, fixed at the

upperbound, and free, problem At takes the trivial form:

A : Maximize z(t) - c xi

Subject to 0 < x a ,i E T

x 0

x -a ,I Ei a Ia

Since we are maximizing over the set of free variables, bounded from

above and since ci > 0 is assumed, this linear program has as optimal

solution:
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, 0 ,If r• 1-

Xr ar (4.33)
r 1ar if 0 C IJT

Note that At possesses always an optimal solutibn and therefore the

exclusion operation, as defined in Chapter 11, will never be applicable

to this problem.

TeAnitnat•on Rutz Rejection operations will not be used in this approach,

hence the termination ,,Ie ie,:.'fne; the fallowing as nay be easily verified:

terminate whenever the solution K to the auxiliary problem of the current

bounded node is feasible, (i.e., x E $1).

LEMMA 4,2 A 6jLWt(3n k_ to At 4 6ea6,bie 601. Q -6 a.t aezo aat'•e,6

E x.<B.4'=1 •-

Proof: If x is optimal for A, , then from (4.33) xi = 0 or ai.V 1 and
if al= J < B, then from (4.29) x_ T and from (4.30), x .

COROLLARY 4.1- 16 x to optae 6oi Ae wt Z x > 8 the aet S--hio~Z w c~ a. gl (C '~
a~~6oc...{a.-ted a outf oQa,6aoc~aed wuth node t dou nit. cnaptan a 6ea•tbte. 6jttton toQ

From the above corollary, a node r of the tree for which Z > B

may be excluded. Observe however that for a larger value of E a

the budget the condition of the corollary may not be satisfied and the

branch would not be deleted at that step.

Up to here the development parallels the additive algorithm of Balas

as implemented by Geoffrion [81, with Corollary 3 1 providing the first

rejection rule of Balas. From the above discussion It has been shown

that Balas' enumerative algorithm r,;ay be interpreted as a branch and

bound algorithm of the Land and Doig type
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However, from hefe on our ipp~oach diverges ffom [8) in order to

provide the parimetri ý,at¶,re of the algorithm.

Fixed vatate Wnen a ofnch,ng operation is to be performed

based on the currently bounded node t, one of the free variables must be

selected to be tiKed at its two possible values. We shall select the

following criterion that will render "deterministic" the generation of

the branch and bound tree: Select foe branching KS s c 1, such that

f mZ mif ] (4.34)
1 1;'

If there is a tie, select the variable with greatest index. With

this selection rule we create the directed arcs (t,t') and (4,r). For the

new noJe V', x. - as, (project s is accepted), the optimal solution to the

auxiliary problem A1' would be the same as the solution to A.; furthermore,

that solution is not feasible for problem Qi* Thus node t' will be denoted

a p6eudo-vtde and no extra computation will be necessary whenever such a

node is generated. As for node r, the solution to the auxiliary problem

Ar has a value z*(r) .. z*(t) where [z*(O) - z*(r)] is the smallest de-

crease possible in the objertive function since, by (4,34), the variable

fixed to zero is the one that has the minimum payoff of the set of free

variables

Whenever a pseudo-node V1 is generated from bounded node (, then

z (V) z (t) and the next bounded node of the solution tree would ob-

viously be V Accordingly, whenever oanching takes olace from t to V'

an extra branch fro. ' will elsu take pace This add'tional branch,

performed by fixing to zero a new variable selected according to (4.34)

will permit us to "look-ýhead" on the solution tree We remark that the

branch from V) fixng the selected variable to its upper bound remains to

be performed and the algorithm must provide for its cnnvenient generation.

In the spnse that any wn of the problem would produce the same tree.

SIf it was, ?being the bounded node, it would be an optimal solution.
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4.6 STATEMENT OF THE ALGORITHM

Having satisfied the ass umpt ns of the a I rithm of Chapter If, and

having indicated the branching me:idnim t0 be employed, we proceed to

state the pura4t;c b'tath anil bXLnd algo, Ithmn.

STEP 1. Set i , Gene,3te node I by solving Al according to (4.34).

Let z , b be the 3ptimal s3'ution aod det'ne B Z xi. If

B < B, stop; the solution is opti&a; Otherwise, bound node 1
with J] z Set. 1 + and go to step

STEP i

A.], BRANCH. Branch from bounded node t. Select the variable xs

according to (4,34). Create pseudo-node t' and node r, and directed

arcs (t.,t') and (t,r) Solve problem Ar with Ks = 0. Set xs = as for

pseudo-node t'.

BRANCH AHEAD Branch from pseudo node i'. Select a new

variable xt according to (4.34). Create node r + I and directed arc

(W', r + 1) Solve problem Ar•1 with 0t " 0. If the unique predecessor

0 of boundea node t is a pseudo-node, go to A 2; otherwise go to B.

A.2 BRANCH Branch from pseudo-node t Let x be the variable

fixed to zero associated with the arc (Co,C) Create pseudo-node t' and
0 0

directed arc (t ,Co) Set p- ap for pseudo-node t

BRANCH AHEAD Brdnth from pseudo-node t-. The variable to be
3

fixed is x Create node r - 2 and directed arc (fo. r + 2) Solve

problem Ar+2 with xt X 0 Go to B

B. BOUND Select nod;.- f such that Z (t) t max tz (k)4 for current

terminal nodes It B* < B for node 4. stop; tne s8iutlo:i associated with
node t is optimai Otherwise, upperbound node t with 1 =z (z), set

i * 1 * 1 and go to step
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The solution tree generited for a knapsa-.k fun,:tion with B Bo

contains the optlmdl solutions (projects dccepted ai well as maximum pay-

off) for all knaIpsack tuntions with B 0 Bo, aý is shown below- In this

sense, the algoithm is parametri,. By ,etting B - C and applying the

algorithm, a table may be 3nestructed with the optimal solutions to problem

Q for any non-negative ,a..je or the buajetj'y :eiling.

LEMM4A 4,3, i~f Z) 8 141 tI 8 bt tq.ýk APi.- A b-,4:.C 6 ;,L two vaua~&e

a6 the budi~get, 8 ý 8 rq,4  5 -'

Proof: Assume z 0 B) zBo0 and let., oe the -jptinnal solutwon for the

budget B0  Since B B0, then o is also teasible for the budget value

B, ,aence z(B) z°(B ) for X_ a contradiction. Therefore,

z°(B) > z0 (B0 )

THEOREM 413 Let T [N, A] be the 6vtat t.,tve genau. ed by, detetmining

the optmot botut•on to Q 6jt B -- B Then 6) any B > B the'e e•• ,64

a node k F_ N -urh that the 6oAtoLn t) the auxf..aty pitobtere A., .6aa

z , x , conata.utea an .ptut autuottn 60o the C etpondcng knapaack

poobLem.

Proof: Given B > Bo, the application ot the algorithm would generate a

tree T [ [N, A] for which at least one node k , N corresponds to the

optimal solution. The t~ee I is a ý,..bgtaph of ro, that is, NCNo and

for all (i., j) E A, a'o (i, j) F_ A In effect, since the algorithm is

deterministic, the nodes of T0 and T, geneated in the same order, will

have the same assocated sOlutions to the aduiliary problems Au- It

remaiis to be proved that when generating T, the optimal node k corres-

ponds to a certain node of the generated pottion )t To. Assume the

contrary, k t N0 ; then ,he solution to Ak gives z (B) < z°(B ), since any

additional branching from T reduces the upperbound value z0(90 ). From

Lemina 4 3 this is a contradiction, and the solution for ." B is not in

the ungenerated portion of To, hene k c N0. It also follows that t is

a subgraph of T
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We now give the following rule for retrieving the optimal node k.

The set of bounded nodes at eal.h iteratlin of the algorithm for B 09

form a sequence [1, 12, t3' , n] where t, I i N is the bounded node

used for branching at iteration i and in is the optimeI node for B -Ba.

Associated with each t there are two numbers, z(* (t and B*(Zi) Due to

the way the branch and bound algorithm has been developed, the z (ti)

values constitute a non-increasngni equence , Therefire, for a given value

B > B it suffices to retrieve the first node for which B < B,

4.7 SOLUTION O1 AN E xAMPLE PROBLEM

As an example consider the following problem involving five projects

with payoffs and capital outlays as indicated in Table 4-3. Table 4-4

contains the necessary information for each iteration of the method. The

budgetary ceiling considered is B = 10.

Project f aNo. Ia

1 6 3

2 4 5

3 3 6

4 2 4

5Lu 1 i

TABLF 4-3

Note that a feasible solution is obtained at Iteration 4 when node

6 is generated, but not intil iteration 1 can it be bounded. Note also

that at itprAtlon 7 (when branching from node 13), all variables for the

pseudo-node 13' are fixed, its P value is greater than the budget, and

therefore it may be eliminated from further consideration. The same may

be said of node 15.

The optimal solution for 8 t 10 is then obtained frr,,r !lode 5.

accept projects 1, 2 arid 5 with zo(l0) 1 11
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From Table 4-4 any optimal SOlutlon for B > 10 may be obtained. It
*

suffices to search down the column of B and read off the solution from
the row for which the tirst B lesi than af equal to the budget of

Step ,erminal nodes B for Uppeoound
I bounded Ut

node

ft

1 1 20 16

2 2 38 15

3 3 4, 5 16 14

4 4 5 ,6, 7, 8 14 13

5 5 6 , 7, 8 , 9, 10 14 13
6 5 6 ,7 9 ,10, 11, 12, 13 15 12
7 5", 6 , 7, 9 , 10, 11, 12, 14, 15 12

8 6*, 7, 9,10,11,12,14, 15, 16, 17 10 11

bounled node

TABLE 4-4

ir:terest is encountered For B - 14 the fourth iteration provides an

optimum, Aith z°(14) t 13 associated with the toond.d node 4, namely:

accept projects 1, 2, and 3 An alternative opt'nma Is given by node 8:

accept projects 1, 2, 4 ani 5.

In Fig, 4-4, the op nai solutions for IB > 10 are indicated

graphically Fig 4-3 contains the required solution tree.
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z°(B)

616'16 1213 14

11

- ______________________________

1 12 i4 16 18 20

FIG. 4-4 Knapsack Function Values

4.8 SUMMARY

In this chapter we have addressed ourselves to the soIL,tion of the
integer progr3mming problem known as the knapsack problem. We have ob-

tained the solutions to the dual proolems, both in L'e linear "nd the
discrete case, and have discussed the natur3l econom'c Interpretation

that may be drawn from such solutions. We have used discrete programming
duality theory to justify Welngartner-s approach ti calculating dual

prices on the primal resources,

The branch and bound al9orithm developed for the multidimensional
knapsack problem in Chapter III has been applied to the single period

capital rmtioning problem with the consequent simplifications indicated.

Finally, a parametric branch and boLnd algorithm las been derived which
provides for sensitivity analysis studies of the optimal solution for

variations of the budgetary ceiling within a certain specified rang.
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!n the following chapter, formulation and solution techniques will.

be provided for the problem of capital allocation to independent projects,

where the investment decisions may be deferred to later periods.
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CHAPTER V

MULT:STAGE RESOURCE ALLOCAT"ON PROBLEMS

5.1 INTRODUCTION

In the preceding chapter we studieu the proolem of optimaliy

allocating funds among competing alternatives, each requiring investment

in a number of time periods and with a fixed horizon, subject to budget-

ary constraints in each period. An effective solution technique was

developed. The purpose of this chapter is to study the pro!Alem of capital

allocation among independent projects that arises in various planning

contexts, where the projects require fixed outlays in one time period, but

the decision of accepting them may be deferred to a later period. An ex-

pected net benefit (financial and social) is assumed to be known for each

project, and the figure of merit adopted is to maximize the total benefit.

We begin by formulating the multistage capital allocation problem as

a (0-1) integer program A special case is then considered where capital

outlays for all projects do not vary over time and any infationary effects

are taken into consideration by modifying the budget ceilings accordingly.

The problem is referred to as the rnic.i-knapzack problem. A suitable

transformation is performed to obtain an equivalent model which is inter-

preted as an analysis-synthesis problem on a bipartite network. The

general branch and bound algorithm of Chapter II is then adapted to

provide a convenient solution methcd,

Finally, a second formuidtL'.n for the multi-knapsack problem is

derived for which a branch and bound algorithm is proposed. In this case,

the solution of the auxiliary problem associated with each node of the

solution tree may be obtained by inspection

75
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5.2 MULTISTAGE CAPITAL ALLOCATION MODELS

Consider a certain government agency confronted with the problem of

allocating a multistaged budget with ceilings Bj 0 O, j=l,...,n, among a

set of m independent projects each requiring a unique capital outlay.

Let fij be the expected payoff, determined from a linear utility function,

of investing in project i at time period j. Further, let aij _> 0 be the

capital outlay requ.ired for project i if selected for investment at time

period j, and yij the associated decision variable that may take on the

values 0 or 1 depending on whether project i is rejected or accepted for

investment in period j. Then the problem of selecting a set of projects

for investment so that the total utility over time is maximized, while

satisfying the funding dependencies represented by the budgetary ceilings,

may be formulated as

P: Maximize z E f.ny..
i=l j-l f 13

m
Subject to E a.. Y. . B. , j=l,... ,m (5.1)

nnE Y_ < . i=l,.. ,n (5.2)

j=I 13

Yij>0 , i, (5.3)

Yij integer , vi,j (5.4)

where constraints (5.1) express the budget limitations; and where

constraints (5.2) serve the double task of guaranteeing that project i,

if accepted at any one period, incurs a unique capital outlay and, con-

currertly with (5.3) and (5.4), that the variable yij may only take the

values 0 or 1.

Problem PI is an all-integer linear programming p,'oblem with (m+n)

constraints and !:ixn inte.ger variables for which a feasible solution and

a lower bound are immediately available, corresponding to the aaotu.s quo
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or reject-all-projects policy., Observe also that by collapsing the nunmer

of time periods to one, the index j may be dropped and thus problem PI

becomes, as expected, the (0-) knapsack problem studied in Chapter IV.

The solution to problem PI may be attained by direct application of

the branch and bound algorithm of Chapter 11. In this case, when constraint

(5.4) is relaxed the problem becomes the well-known ,veighted di.&t'.Z/btion

pkobtem, sometimes called the genzuZized tr•,•p• ,)Atauon p•oblem. There-

fore the pv-,mal method of Dantzig [1] or the dual method of Balas [2]

could in prin:iple be used as subalgoi:thms tor solution )f the auxiliary

problems associated with each node of the branch and bound tree.

We shall, hawev6?, address ourselves to the special cdse of P1 in

which the capital outlay for each project remains the same regardless of

the per-iod chosen for investment; this amounts to assuming non-inflationary

costs throughout the horizon of interest. The problem thus obtained has

wide application to various resource allocation problems.

5.3 THE 'MULTI-KNAPSACK PROBLEM. AN EQUIVALENT MODEL

Problem P1 with the additional condition that the aij are the same

for all j, which we shall call the muttt-kk-apcsaaJp problem, is a generali-

zation of Dantzig's knapsack problem. It can be expressed as follows:

determine the optimum packing of a set of m articles into a set of n

knapsacks, given the desirability fij of each item for each knapsack, the

weight a, of earh item, and the maximum weight B that each knapsack is

allowed to carry

This problem is of special importance in the operation of trarispor-

tation terminals, where optimal cargo loading into vehicles of varying

capacities is desired. Also, it arises in a computer environment, where

programs or files of a given siz.. are competing for non-connected fixed

size data storage pools. These a,'e but two examples of optimization

problems that can be modelled as multi-knapsack problems.

We shall study this problem in terms of an alternative model

equivalent to problem P1. Wit;, this equivalent model, the problem will

be interpreted as a network analysis-synthesis Froblein 0hich resembles

the plant location problem with fixed charges on links with positive flows.

A branch and bound algorithat for the soltjtion of thOis problem will also

be developed.
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Consider p)roblem P1, with a . -ep:..'ed by a is ao,:ussed above.

Replacing the set of -a-;toles y•3 oy the new va-aio'es f a I Y=j, and

letting c ij !., we obta', the fo'lowing eqj-oalent p,ogram'
a'

m n
P . M ax' m ze z :" ' x -J

4z

Subject to ; < < e , j,...,ri (5.-t

n
E xi<ai , -,....m (5.6)

xij - 0 o0 a , * i,j (5.7)

Ptoblem P is d discrete b~valent linear programming problem where the xj

represent capital outlays to be determined and the cij represent the

utility of project i at time reriod j, per un-t of outlay required.

Let us interpret the set* N, [i I 1 1 ,.. :.-] as a set of "origin"

nodes, N2 = [ / J = 1,,.. ,nj as a tt of "destination" nodes, and the

set A of ordered ppi's (ij, is 3-cs jo'ening nodes i and j. Furthermore,

let ai be the "demand" a, --np;t of node , e- NI and B the "demand" or

output of node j E N2 , anu intewpret x, . as flow on the arc (i,j). We may

then associate a bipartite network G r tL1, N2 . A] to problem P; or better

still an equljalent network with a single source and a single sink. This

latter step may be achieved by adding artificial nodes s and t. and

artificial arcs (s,i), c ' c N, and (j,t), *j c N2, with the following

associated values: c.,1  0, us1  a, and cjt 0 0, u jt B.; where usi

and ujt denote respectively the upper bounds on the arcs (s,i) and(j,t ).

The associated netwok is shown in Fg. 5-1. The first number on each

arc represents cost and the se:ond -epresents ar: capacity
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• • J •O,B2

FiG. 5•I1

The multi-knapsack problem therefore may be expressed in terms of
network flow theory as an ta~y•Z•-. nt•< p~oblem: find the maximum
flow from s to t that maximizes cost on the network of Figure 4-1 , subject
to the restrict~on that arcs (i,•), i • I j c N2 are either not used or

saturated; and find as well its distribution pattern Note that since the
upper bounds on arcs (s,i) are a , if project r is accepted only one arc

(r,j) will be activated.

The optimal solution deter-ines which p~ojects will be accepted for
investment (not all arcs (s,i) need be saturated); and it determines to

which destination node they will be assigned, thus completing the-synthesis

portion of the problem
Observe that problem P dlffets from a standard transportation problem

with surplus and def'cit in tn~t each origin, if .•sed at all for shipping,

must supply a single destination node. (:t also ditters in that P is a
maximization problem) If, however, the constrdint (5.7) is relaxed so
that the •l are simply restricted to be no.1-negative, the resulting pro-
gram indeed corresponds to a trdnsportatlon problem with surplus and

deficit This fact will be employed in proposing a subalgorithm for
solution of the auxiliary problem during our development of the branch and
bound solution 2 ethod in Section 5 4

The model as presented in formulation P may be extended to consiJer
mor flexible cases which might add relevance to the problem or be adapted
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to a more realistic situation. When budget deferrals are allowed, thus

transferring unused capital to a later period, the P formulation mu=t be

modified, as indicated below, to account for such fleAibility. Let s be

the unused budget, if any, at time period J, Then it suffices to modify

the constraints (5.5), replacing then instead with the following one:

m
1=1ij , sj - s-- B , l (5.8)

where so 0 0. We remark that the coefficient of sj. 1 is one, hence no

present worth factor has been considered in (5.8) and thus the slacks

simply represent idle costs. Other generalizations may be made, such as

lending and borrowing in the capital market. (See for example, [31,

Chapters 8 and 9.)

The network representation "ir problem P with (5.8) instead of (5.5)

would correspond to the one of Fig. 5-1 with additional directed arcs:

(n, n-l),...,(2,1). These arcs are uncapacitated (unless deferred ex-

peiiditure is specifically bounded) and have zero costs.

5.4 DEVELOPMENT OF A SOLUTION METHOD

We shall derive a branch and bound method for the solution of

problem P by utilizing the same terminology and notation employed in

Chapter II. We begin by defining the sets Sl, T1 and il as follows:

m n

S { xi .<B., T x.. < a, x.i > 0 * (i,j)}1 =1 J" j=l 1ij " 13J

TI =(x/ Xij = 0 or a i}

•I=Sl 0 Tl

We observe that S1 is a closed and bounded convex set, since it is

defined as the intersection of a finite number of closed convex half
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spaces; furthermore, P'y ve:tor x with xij < 0, * i,j constitutes a lower

bound, and, for examp. , I witn xj V B constitutes an upper bound . Also,

Tl is a finite non-empty set deteniivned by the 2 vertices of the

rectangular polyhedron defined by 0 s xij s a,, Vi,j. Finally, "l, de-

fined as the inteose:t'on of S, ard T., i finite, since T, is finite, and

non-empty, since at least x = 0 be•ongs to the inte-section fi. Since 11

is non-empty, an opt'na, solution to problem P a yap exists.

Brtanchi.ng op•L<t•.n Given a ce,'ta'n node t of the solution tree with

associated sets dol dn3 Se. the b-anching is defined by their intersection

with the sets

V ,r v Ixij / X{st / 0}

V ,- I -- ix ij X st = asI

for a given i = s and j t ý The sets rhus defined satisfy the first

sufficiency condition of Theorem 2.1, that ;s:

V, V x / s O st a} =

Also, since i is a subset of QI (by the branching operation) then from

(5.7) the Xst •omponents of the vector elements of S1 must be either 0

or as. Then 1te•fl(Ve,rflVe V 4.l) = slt"' {Xij / Xst = 0 or xst a as} I

and the second condition for sufficiency of Theorem 2 i is also satisfied.

Finally, since at each branching operation one variable is fixed to

each one of its possbie values, ttie fin'teness of the number of variables

assures that only a finite nunmer of branching operations are. required

before total enumeration of the elements of Q, is accomplished.

Obviously, no capital outlay may exceed the sum of all the budgets;

if so, it may be ruled out of the problem
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5.5 THE AUXILIARY PROBLEM AND ITS SUBALGORITHM

At each iteration of the branch and bcind algorithm, associated with

each newly-generated node t of the solution tree, a continuous auoxa-J m

p&obeem A. derived from P must be solved.

Denote by Io C A the subset of arcs (1,J) e A of the network G for

which x = 0 (0.e , investment on project I rejected at period J): hy
I Ca A the subset, of a-cs witn x,, a a, (i.e., projezt accepted in period
J); and by I, the set of "fvee" arcs. Then the auAiliary problem A.

takes the form

At :Maxmize z(.) - M £ ME ct
1-i j-I

m
Subject to E x. - B. ,jl ,n

1=1 xt<a't1,,

-J a, , '

xj Z 0 O (i,j)C o

XijA a, , (i,j) E Ia

S> 0 , (ij) E 7

This is a t, nsportation type linear program In inequality form with

some prohibited routes and where maximization is sought. Therefore, this

problem may be solved by any available transportation algorithm. In

particuldr, the genefalized primal-dual algorithm of Fulkerson (4] is

perfectly suited for thin problem. Indeed, at each node r of the branch

and bound tree, the solution to the auxiliary problem of the unique

The arcs (0,j) e A for which xt, a a, may be interpreted as

prohibited routes if ;i is first subtracted from the corresponding

nodes i and j
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predecessor node Z of r may be used as a starting flow. The out-of-kilter

algorithm will then reoptimize this flow a:cording to the status of sets
Io and la asCiciated with node ;f r corresponds to the branch x = 0,

It suffices to set the lower and upper bounds on that arc equal to zero.

If, on the other hand, the branch corresponds to x ais the lower and

upper bounds will be set equal to a1 ,.

Observe a~so that if an optimal solution to Ar has been obtained,

given by

i 0 af ( "J ) 1

0.< x aJ , if(i)

then a feasible iolut:on to P, provided by i rounding operation on x , is:

I A ifx Oora.
K j - j *j

L 0 if 0 < x a

This simple opert•,' permits the ise of the double bounding technique

as well as the rejection operation of tle branch and bound algorithm, which

we proceed to enunciate:

STEP 1. Set i 1 and creite node I Sol-e A1. If x is such that all

•j :0 or a,, stop; the solutlon;i is optimal. If at least one

0 0 or a,. bound node 1 witf, U1  z (1) Round node one to

obtain X, i(l). Set LI W(l). Here UI > Lt. Set i i + 1
and go to step

STEP a) BRANCH. Branch from bounded node t Create nodes r and r + I
and directed arcs k{,r) and (t,r+i). Select any xi such that

0 < xx i k al for node t, and branch with x ij 0 and xiJ & ai.

Solve Ar using the subalgorith,, arid then A, based on the
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solution to Art If A, or At+l are infeasible, exclude them from
further consi deration.

b) ROUND. Round nodes r and r + I to obtain zr and Zr+£ .

c.l) BOUND FROM EELOW. Set Li max [L11 , A(r), i(r+l)].

Reject all nodes with z < Li.

c.2) 3OUND FROM ABOVE. Select node t such that z*(t) = max• k
[z*(k)], for current terminal nodes. Upper bound node t with

U1 - z (t), If Li = U1, stop; the feasible solutiorn that provides

the lower bound is optimal. Otherwise Li < U.. :et i = 1 +1 and

go to step i.

5.6 ALTERNATIVE FOR, LATION FOR THE MULTI-KNAPSACK PROBLEM

In this section we present an alternative formulation for the multi-

knapsack problem which permits the solution of the auxiliary problems of the

branchi and bound tree by inspection.

Associated with each project I c N, we introduce a decision variable

Yi restricted to take the values 0 or 1, which indicate rejection or

acceptance of the project i, respectively.

Then problem P may he formulated as follows:

fp n
P2 :Maxmze z E Y C= (5.9)i=1 jlclj x;3  5g

m
Subject to iI j _ B. , X1,...,n (5.10)

S. . " i ' i , i l , , ( . )

xlj 0 or ai , V 1, j (5.12)

. o 0 or 1 , $ i (5.13)
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Here constraints (5,11) and (5,13) establish the fact that, if

project i is accepted, y, z 1, the total outlay over all time periods is
ai. In addition, constraints (5.12) guarantee that the outlay ai will be
disbursed in only one of the stages considered,

We may express P2 in a more convenient form for developing a solution

method, as follows:

P2  Mcimize z c(514)2 M"-'! , "" 1 ' 41

m
Subject to . < Bj =,I ,n (5.15)

0 < xij . aii, ) (5.16)

n
Z x.. / a. 0 or , i (5.17)

j=l i I

x., = 0 or at i, j (.8

We observe that, )f the discrete constraints (5.17) arid (5,18) are
relaxed, the resulting linear program, (5 14) subject to (5.15) and (5.16),
rmay be solved by inspection, Indeed, it is composed of n mutually
independent linear programs, each one associated with one time period

J 6 N2

Under the assumption of non-negative ci, and after ordering the cij

for each j E N2 in decreasing order, the optimal solutions may be obtained

by an expression analogous to (3 25)
The branch and bound algorithm may therefore be applied directly to

problem P2 above

At each step of the algorithm, one viriable, not currently satisfying
(5.18), is fixed to its possible values, thus defining the branching

operation.
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We remark that for a certain node of the solution tree the values of

yi calculated according to (5.17) may be greater than one; in fact, they

may be as large as n, where n !s the number of time periods,

Note a!so that a rounding operation may be performed at each

iteration, However, if the solution of the auxiliary problem results in

a certain project i with capital outlays aI in oarious time periods, more

than one feasible solution to P2 may be obtained by application of the

rounding operation,
When a comparison is made of the branch and bound algorithms developed

ir Section 5 5 and the one indicated here, we may point out the following:

The first fortaulation P requires the solution of a network flow

problem at each node, as opposed to the solution of n simple linear pro-

grams solved by inspection when the formulation P2 is used. However, the

second approach in general requires the search of a larger number of nodes

before optimality is reached.

5.7 OPTIMAL ALLOCATION OF PROGRAMS TO PRIMARY MEMORY

We conclude this chapter with the formulation of a problem which is

related to the multi-knapsack case and which arises in the context of

allocating programs to primary memory in a computer system.

Consider a set of m items of size ai, i = 1,.o., m that are to be

loaded into n knapsacks of •apacity B,, j = 1,_, n. We assume
n m
1 BJ > E a,. The problem is to assign items to knapsacks so that theik1 " 1=1

minimum number of knapsacks is used. The use of each knapsack incurs a

fixed cost f., and thus the total cost of using the knapsacks is to be

minimized,
The problem may be formulated as follows:



II
MULTISTAGE RESOURCE ALLOCATION PROBLEM 87

n
P3  Minimize z E f (5.19)

m
Subject to Z K B (5.20)

r K a] (5.21)

!1.• , i. l 1 5.22)

Yi 0 or i (5.23)

xj =0 or a, (5.24)

where the decision variable yj is associated with each knapsack.

Constraints (5,22) guarantee that no flow will occur from nodes I c Nl

to node j c N2 if yj = 0O
Again, problem P3 may be solved by direct application of the branch

and bound technique, We shall indicate here that If constraints (5.23)
and (5.24) are -elaxed, the resulting linear program may be solved by

means of a network flow algorithm.
Indeed, since we are minimizlng, the optimal solution to P3 without

discreteness constraints will necessarily satisfy (6.22) as a strict

equality:

0 0 i M

1'j •y y a, (5.25)

Substituting (5 25) in the objective function, the problem to be sclved

is:
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l m n fiMinimize z m El x

m
Subject to Z x1=1 Xl B

;Ij J a, xij-O

which obviously corresponds to a transportation problem, and thus a

network flow algorithm may be employed for its solution.
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CHAPTER VI

THE MULTISTAGE NETWORK DESIGN PROBLEM

6.1 INTRODUCTION

In this chapter we shall proJpose a programming model aimed at

determining an optimum transportation network development plan for a

metropolitan area. The model to be derived synthesizes the best network

configuration among a set of suggested improvements maintaining ex-

penditures within expected future budget ceilings. The budgetary

constraints, projected into the future from trend studies of past trans-

portation expenditures, are assumed to be given up to a fixed horizon in

a predetermined staging sequence. The model furthermore assumes the

continuity of a stable technology over the entire period of interest.

The figure of merit selected for optimizat'on is the total user

cost over all time periods. The required input data are the expected

origin-destination demands for all time periods over the existing network;

the subset of existing links selected for capacity improvement with the

corresponding capital requirement; and/or the construction costs of

specific links to be added to the current network and their total improve-

ment of capacity if selected for construction. Also required is the

topology of the existing network, with link capacities and estimated

users cost per link for all periods of interest.

The problem described is interpreted as a cApital investment problem

with dependent projects, where the des•rability of combinations of pro-

jects will be reflected in the redistribution of flow volumes and therefore

in a reduction of total users cost. The projects' interdependency rela-

tionship- are taken into consideration by imbedding into the 5asic model

a network flow distribution submodel. In this fashion, the multistaged

network design protlem is interpreted as a combined network flow and

capital budgeting ?robler.

89
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The various topics considered in this chapter ave or'g.nized in the

following manner: we begin by presenting a general overview of the urban

transportation planning process with emphasis on the various classes of

network improvement evaluation models, their characteristics and main

drawbacks. "ext, a discussion of the various levels of network improve-

ments and a ._iew of existing models for each type of improvement is

presented. With this background material, the basic multistaged model is

developed in terms of a highly-structured mixed-integer linear programming

formulation. The structure of the model is then thoroughly analyzed in

order to propose a convenient optimization technique for carring out its

solution. Tne propubd solution procedure is the partitioning algorithm

of Benders (cf. Appendix A) which fully utilizes the decomposable nature

of the multi-stage problem.

6.2 THE URBAN TRANSPORTATION PLANNING PROCESS

The need for an integrated long-range transportation plan for

metropolitan areas has been widely recognized by civil engineers, city

planners, economists, sociologists, city officials, etc. in the postwar

era, as a result of the explosive increase in the size and complexity of

urban areas. The need for such a master plan has been officially endorsed

by Congress in the Federal-Aid Highway act of 1962, which grants federal

aid to urban areas of more than fifty thousand population, provided that

their projects are based on "a continuing comprehensive transportation

planning process...".

The planning process is primarily concerned with forecasting future

demand for transportation in a certain study area, as well as planning

transport facilities that provide a satisfactory level of service while

maintaining the co-responding capital expenditures within expected future

budget ceilings.

Comprehensive studies such as the Chicago Area Transportation Study

(CATS), Penn-Jersey Transportation Study, etc., have been carried out

from a systems viewpoint; the attempt to consider all the interacting

elements that affect the demand for transportation, and to plan new

f•.>Iities in the light of their interaction with the existing network
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(as opposed to making local decisions or accepting small-scale palliative

solutions). For- a general description of different issues akin to urban

transportation st..dies see Moyer [1].
The relation of utban development to demand for transportation and

the effect of new facilities upon demand patterns have been carefully
identified. Past research has focussed on the characteristic steps of

the planning process; quantitative approaches, such as use of mathematical

models and techniques, have been suggested for each step of the planning

process, and much experience and momentum has been gained from these studies.
Most transportation planning models are based on expediting the

extrapolated trend of ecanomical and environmental development.

Although the transportation studies carried on for various

metropolitan areas had to treat different problems according to the spe-

cirir areas of interest, they present virtually the same pattern in their

solution ._pproach. This pattern indicates the fundamentai steps of the
transportation planning procesc, which we proceed to enumerate.

!) Inventories for base year:
These consist of inventory, for a reference year Tb (base year), of

the relevant factors that will affect the future demand for transportation.
The inventories usually considered, mostly based on censuses, are listed

below.
i land use inventory

ii population inventory
iii transportation inventory

iv trend of transportation expenditures

i!) Inventories for target year: These d.e developed by foreý-

casting, for the takget yeat Tt (usually a 20 or 25 year interval), the

changes in the ba yevt inventories.
This forecasting is usually attained, for each type of inventory, by

means of prediction ,oodels of varying sophistication Martin, Memmott

and Bo.ie [2] present an analysis and detailed description of various

models often used in the planning process.
IL is interesting to observe that these first two steps are

invariably reluired for an integrated study of the development and

improvement of any kind of facilities in a metropolitan area.
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iii) Transportation Analysis:

Based on the demand for transportation at TB and on both the base year

and target year inventories, the future demand for transportation is fore-

cast, and a master transportation plan is developed. This analysis con-

stitutes the core of the transportation planning process and its accuracy

will be a direct function of the accuracy and completeness of the

forecasting analysis.

6.3 TRANSPORTATION ANALYSIS

We shall briefly mention the now well-established steps into which

the transportation analysis phase is subdivided. For each step, well-

developed models are available, and a substantial amount of research is

currently underway seeking to verify and improve the accuracy of such

models.

i) Tu.,p Generact-ion. The purpose of trip generation is to

determine the number of trips starting (or ending) in a particular zone

of the study area for specified future years.

ii) Ttip Pttribu~wtion. Tr'D distribution is the process of

assigning destinations, by means of a distribution model such as the

gravity model, to the trips generated in each zone of the study area.

iii) Modat SptZt. The modal split analysis is used to estimate the

future breakdown of trips among the available t-ansportation modes. The

models most frequently employ multiple regression analysis, and are used

to predict future modal split for the modified values of the input

variables; this clearly implies that no major changes in transportation

technology are expected during the period of interest.

The modal split phase assigns each future traffic demand by mode to

the corresponding transportation network for that mode.

iv) Tt•af-cc A ic'gwcrt. The objective of the traffic assignment

is to determine flow patterns in specific transportation networks, where

flows are associated with the different modes adopted in the planning

process. This step, being of special interest for the present work, will

be treated in more detail in forthcoming sections.



THE MULTISTAGE NETWORK DESIGN PROBLEM 93

v) Tuo.mpo•taZ.on Sy6tex EvatZuaton. The traffic assignment step

is usually performed for each mode and for alternative transportation
networks, with the main objective of obtaining substantial information

on tht relative performance of the alternatives. This will hopefully
perlit the rational selection of the transportation system that will best

meet the future demand with a suitable level of service,

The evaluation of the various alternatives is vsually done by
standard techniques, such as cost-benefit analysis or rate-of-return

method. In a forthcoming section this evaluation step will be analyzed

and identified ds a capital budgeting problem which can be systematically

and quantitit-vely it{i:ked

The output of the evaluation phase, possitily obtained after several
iterative cycles of the total process, will be the desired long-range

urban transportation plan for the area of interest

6.4 THE TRAFFIC ASSIGNMENT PROBLEM

In the context of transportation planning, the term traffic

assignment means the determination of flow volunes on the links of a given

transportation network, where volumes per unit of time are specified be-
tween each zonal pair in a set of origin-destination pairs. The traffic

assignment permits the evaluation of the performance of network alternatives.
The question of how the flow distributes itself over the network

constitutes one of the most important issues in transportation planning.
Two different criteria, enunciated by Wardrop [3) and formalized in

mathematical form by Beckman et al [4] and Charnes and Cooper [5], have
initiated the development of two major classes of traffic assignment

models. These are generally given the titles of dec-tpt(te (predictive)

and neuvat4,,e (prescriptive) models Each Wardrop postulate suggests that
the flow distributes itself over the netwoK according to one of two

contrastinq extremal principles:

i) Postulate of equal travel times: for a flow assignment, the

travel time between any two points on the network will be the same on all
routes used and less than thp travel time on any other path joining the

same two points
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ii) Postulate of overall minimization: for an optimal flow assignment,

the average travel time for all users of the network attains its minimum

value.

De~hcA4ptive Ttai664C A44 gyyfeent Modet6

This family of traffic assignment models is based on Wardrop's

princlpoe of equal travel times The computer implementation of such

models has acquired great nmentum as a result of their use in transpor-

tation studies of major metropolitan areas during the early sixties.

These programs implicitly use the game theory model of Charnes and Cooper,

where all travelers seek to minimize their own travel time.

The flow distribution is achieved by iteratively assigning traffic

from each origin node to all destinations according to current shortest

path-routes. After completion of each iteration, the resultant travel

times on links are updated according to their current loads and the origins

will again take turns assigning portions of their flows.

The descriptive models used in different transportation studies

present variations in their actual calculation, but they are all based on

the principles indicated above. In (6] and [71 the reader will find a

complete description and comparison of the various models in use today.

No',tmat4.ve T~ta~66c A6.cgmrent ModeL.6

This class of models is based on Wardrop's postulate of overall

minimization and on the traffic flow analysis of Beckman et al, and Charnes

and Cooper: flows distribute themselves so as to minimize the total

travel time in the system, as opposed to individual travel times.

This op:imization problem has been formulated by Charnes and Cooper

(5), for congested networks, as a non-linear programming problem; the non-

linearity results from the fact that link travel times increase non-

linearly w'th flow volumes. They further simplify their model by suggesting

a piece-w.1:• linearization of ,,ne travel time-volume relationship,

accomplished by Introducing multiple capacitated arcs with increasing

travel times. The resulting model is a linear program known as tVe

multicopy-cost-minim'zation network flow problem. This problem has been
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thoroughly analyzed and exploited by Pinnell and Satterly [8] and by

Herbý#,orfer [9].

Jorgensen [10] has studied both classes of traffic assignment models,

3nd shows that for the uncongested case (rural networks), both the

descriptive and normative solutions give the same flow distribution

pattern,

The actual computer implementation of normdive models requires a

linear programiing routine capable of handling a potentially large number

of constraints; or alternatively, with the additional capability of ex-

pioiting the highly-structured form of the model oy conveniently decompos-

ing the proolem into molt trdctable Subprograms.

6.5 TRANSPORTATION NETWORK IMPROVEMENTS

The main goal of the traffic assignment is to determine the level of

service provided by a given network for a set rif demands previously spe-

cified. When the demand expected for the target year is assigned to the

network configuration of the basic year, it is likely that the latter will

not provide a satisfactory level of performance. This condition will be

reflected in the final assignment by an excessive number of links operating

under congestion.

On the other hand, if new urban areas are expected to be developed

by the target year, che network will have to be expanded to provide

transportation facilities to these areas.

This situation cleaely calls for a network improvenment plan to meet

the forecasted demand, making use of the limited capital resources expected

to be available for such purposes during the period of interest. Various

levels of improvement, some of which are listed below, may be undertaken

to cope with the increasing demand pressures.

i) Augmentation of capacity in existing links. This improvement

may be realizable by various means, rangii:g from. enforced parking re-

strictions in certain arteries to new lane construction and more expedient

traffic control systems.
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il) Rearrangement of one-way and two-wi. streets to provide an

optimal configu,'ation.

iii) Addition of new linkr to the existing network.

iv) For public transportation, construction of new terminal

facilities and links to connect these facilities with already existing ones.

'n practice, the final long-range transportatlon plan may call for

a mixed strategy utilizing various modes of network improvement. It is

obvious that a transportation planner has to analyze a large number of im-

provement alernatwves, before a final plan is adopted, The tb'o classes

cf traffic assignment mnodels studied previously provide totally different

approaches to solving such synthesis problems.

6.6 NETWORK SYNTHESIS VIA DESCRiPTIVE MODELS

To describe the synthesis solution when descriptive models are

employed, let us assume that a specific iet of links proposed for con-

struction constitute tie type of improvement prescribed.

It is obvious that each project may not be analyzed independently of

the others, since the total network performance is highly dependent on the

combination of projects considered. On the other hand, if m is the number of

possible link additions, 2I? different alternatives exist, and- its exhaus-

tive analysis is clearly impossible for eve, moderately large m. The

usual practice in the ecornmic evaluation of traff:c networks is to select

a puc•ie, a smail subset of the potentially large number of alternative

networks and accept the one that provides the best "measure of effective-

neSs".

To determine that measure o:' effect;veness, a traffic assignment is

-equired for each alternative netv\ork as provided by a given descriptive

model. The output of the traffic assignment (average dailh traffic for

each link) may be converted into users' cost. The accumulated users'

cost .for -the entire retwork, and the total capital investment for the

plan presently co6sidered, are the parameters needed for estimating a

measure of effectivenev•s for tthat project. A detailed description if the

various elements required in sjch a process, as well as procedures and
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methods to obtain them, may be found in the work of Halkalis arid Joseph

[11]. When the process just described has been completed for the subset

of plans under analysis, the usual practr'e is to apply a benefit-cost

ratio analysis, a rate of return on marginal investment analysis, or some

other classicial economic method, to determine the best alternative among

those which have been preselected for consideration.

When a budgetary constraint is imposed on improvement expenditures,

the synthesis problem may be solveo by direct application of optimization

methods for combinatorial problems. !n particular, a direct search tech-

nique or an implicit enumeration method may be in order. We conjecture

here that it mwy be des'rabie to apply an implicit enumeration technique

as described below First, we assume that as the number of links added

to the network increases, the total user ..nst delines. Let the MOE be

the user cost, with B the budgetary ceiling -', capital investment, and -

an m component binary vector associated with the acceptarne or rejection

of the links considered for construction. Hence, the new link addition

problem may be expressed in terms of B and the project costs aj as

S : Minimize z = f(Y) (6.1)
m

2Jbject to Ea.Yy<. B (6,2)
j=l 3 -I

y. = 0 or 1 (6.3)J

where z is the total users cost as a function of the vector y.

Problem S is a constrained optimization problem that may be

interpreted as capital rationing for dependent projects. The dependency

appears in the objective function (6 1,, which cannot be expressed in

closed mathematical form, but can only be evaluated as a result of a

traffic assignment for each vector y, (each network ccnfiguration)

cors idered.

SOLUTION METHOD. We shall propose an implicit enumeration technique

based on the general algorithm of Chapter II,(See[18] for a complete

presentation), where
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SI .yj I 0 5 :j 11 (6.4)

m

T {.j / 18=yj < B, yj 0 or 11 (6.5)i -

S1r)Tl T1  (6.6)

The auxiliary problem becomes:

At. - Minimize z -- f(y)

Subject to O < yj I , j E

yj =0 , j E Jo0

yjO1 ,jEJ1

where 3 is the set of free links, Jo the set of rejected links and JI the

set of accepted links. Under the assumption that the value of z does not

increase, as the number of links added to the network increases, the

optimal solution to the optimizatiorn problem A t is

, J 0. if j E Jo0

Y0 (6.7)
"1, otherwise

*(

where the value z (*) is determined after the output of a computer program,

which performs the descriptive traffic assignment and converts the link

traff'c volumes into user cost, is obtained. The branch and bcund al-

gorithm may then be stated as follows:
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STEP 1. Set i 1, Generate node 1 by solving a traffic assignment with

I' , •' j. Let z*(I) be the total user cost. Calculate

B E a~yJ If B < B, stop; the network configuration is

optimal. Otherwise, bound node 1 with L = z*(1). Set i = i + 1

and go to step i,

STEP i

a) BRANCH. Branch from bounued noue L. Select one Yk to be fixed

to zero and one Create nodes r and r + 1 and directed arcs (Z,r) and

(., r t I) Solve the t'aftic assignment corresponding to Ar with Yk = O,

adding k to the set J Solve the traffic assignment corresponding to

A r+1  with Yk = 1, adding k to J,.

b) BOUND, Select node t such that z*(t)= min {z*(r)}, for current
M , r

terminal nodes. If E&y < B for node 1, stop; the solution associated
j=l

with node t is optimal. Otherwise, set i = i + 1 and go to step i.

6.7 NETWORK SYNTHESIS VIA NORMATIVE MODELS

The important advantage of normative models lies in thefi- flexible

handling of synthesis problems, since the intrinsic nature of optimization

problems is such that a convenient solution technique takes care of the

combinatorial aspects, and finally selects the best project combination.

A substantial amount of research has been undertaken in this area,

and various model formulationc have evolved from the study of various

types of network improvement problems.

The technique of continuous augmentatior of capicity on existing links

has been formulated by Garrison and Marble [12] and by Quandt [13]. In

the latter model, the construction cost appears as a budgetary constraint,

rather than as part of the objective function, as treated by Garrison and

Marble.

Hershdoffer [9] studied the optimal one-way and two-way street

configuration by extending Chcrnes and Cooper's multi-copy network model
by an ad hý•c introduction u! decision variables into the model.
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Hershdorfer, and also Roberts and Funk [14] have used Dantzig's

sieme of introducing decision variables in the upper-bounding constraints

on certain links, thereby obtaining a suitable formulation for the new

tiLk ad•-don problem, Roberts and Funk consider rural network improve-

ment subject to a budgetary constraint as opposed to Hershdorfer, who

essentially assumes an infinite budget and congested networks. Recently,

Ridley (15] has developed a combinatorial approach which he calls the

"method of bounded subsets" for solution of the discrete augmcntation of

capacity problem,
The branch and bound algorithm developed in Section 6.6 is equally

applicable to the new link addition synthesis problem when normative

models are employed, In this case, the subprograms At correspond to multi-

copy network flow problems, which can be slved by means of a decomposition

form linear programming code.

The simultaneous optimal node and link selection for an urban public

transportation network, subject to a budgetary constraint, has been solved

by Ichbiah (16] by means of a parametric branch and bound technique. His

model does not directly consider flow volumes on the proposed network.

The set of models described above study network improvement problems

for a single time period (base year to target year). In fact, the budget

available for transportation investments is commonly appropriated in a
multi-stage manner. Although the models indicated may be applied suc-

cessively for various time increments, what the long-range transportation
plan calls for is a sequence of improvements of the traffic network so

that a convenient figure of merit is optimized over the total sequence of
planning periods. The purpose of this chapter is to formulate a normative

model that represents the goals indicated above, for different types of

improvements.
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6.8 NET.ORK IMPROVEMENTS OVER TIME

Based on the discussion of previous sections, we may conclude that

the preparation of a long-range transportation plan for a target year has

been sufficiently studied, and that a variety of mathematical models are

available to conveniently attack the problem. Conside•ing the fact that

a master plan would be actually implemented in a stage by stage fashion,

and that available funds for transport expenditures are usually appro-
priated in fixed amounts for each planning period, a model taking this

staging into account seems more appropriate.

Research on network improvement overtime has been done by Kalaba

[16] for communication networks. The problem that he considers, howeve,,

is continuous augmentation of existing links' capacities. Roberts [17]

has studied the muitistaged link addition problem and proposes a solution

method based on solving each stage, commencing from the last one, with a

budget equal to the sum of the budgets up to the stage being considered.

Links not accepted in the last period, are deleted from further considera-

tion. His solution does not necessarily provide an optimum when the goal

is to minimize a figure of merit over the entire horizon.

Before developing a noymative model for the multistage link addition

problem, we shall mention certain important aspects of the problem.

In the preparation of a transportation plan, before decisions can be

made regarding facility improvements which are feasible in terms of cash

flow, a preliminary planning of new facilities is required. The study of

deficiencies in capacity provides a basis for such preliminary design.

We shall assume that a set of possible new facilities, from which no

optimum plan or subset is to be selected has been establi:"ed.

We assume further that the construction costs for a specific type

of facility have been previously obtained. This is obviou.fly difficult

since in order to obtain them, the facility must be located, and to es-

timate cost, certain standards must be fixed, which depend in general on

the flow volumes likely to use the facility.

Finally, the future demands for transportation required1 by the model

have been derived from forecasted land use patterns, but the new facili-

ties provided in the planning period will in turn modify the land use
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development pattern, We shall not consider this interaction directly, but

it could be treated with an iterative application of the model.

With these assumptions made we proceed to develop an optimization
model that permits us to determine, for normative traffic behavior, the

best improvement plan in time and space.

6.9 ANALYTICAL FORMULATION

Consider the graph G = [R, A] consisting of nodes which are denoted
in any order by the sequence of numbers 1, 2,...,N and of directed arcs
(i, j) joining nodes of the set . The set of all arcs is denoted by A,

and will be partitioned into two sets X and Y such that XUY = A. The

set X cnntains the set of all arcs of the existing network of interest.
The set Y contains all arcs which form the set of proposals to be added

to the network over n time periods. Note that if X = 0 we are confronted

with a complete synthesis problem.
Let the amount of flow of copy cL (here a copy associates all of the

traffic flowing from or to a specific origin or destination) associated

with arc (i, j) E A at stage k be x0i. Denote by cijk the discounted

unit cost of travel on arc (i, j) at stage k, and by uijk the capacity

or upperbound on the flow over arc (i, j) at stage k,

For each (i, j) E Y, let aijk be the capital outlay required to

build arc (i, j) if selectcd for construction at period k.

Denote by roi > 0 the net amount of flow into node i of copy CL at
ik

time period k, (or r ik < 0 if the net flow is out), and by E, the node-

arc incidence matrix which describes the network G. The total budget
ceilings available at time pe-iod k will be denoted by Bk* Let n be the

number of time periods and N the total number of copies.
The problem of optimally selecting link proposals for construction

is that of satisfying the budgetVy constraints at each period and mini-
mizing the total user cost over the entire interval. It may be formulated

as follows:
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N n

M:Minimize z E E E Li xiJk
a=l k=1 (iJ)cA ljk (6.8)

N
Subject to E e x = r I k (6.9)

J21 e uk ik *' '

N
N jE U , (i,j)eX, A k (6.10)

N aU (t,j) , V k (6.11)

a 1ijk JK Yik ' r # k

Yijk Yijk+l 5 , (iJ)cY, k=l, (6.12)
... ,n-1, n > 1 *

E a.a-k (Y'ik- Yijk-I) 5 Bk, *k (6.13)
(i ,J)E•Y

'Xijk ? 0 (6.14)

Yijk : 0 or 1 (6.15)

In this formulation, constraints (5.9) represent the conservation of

fluw equations for all copies and all time periods, with eij being the

corresponding element of the node arc incidence matrix E.

The constraints (6.10) constitute the upperbounding constraints on

the sum of all copy-flows utilizing originally existent arcs (i,j) e X.

For propu;ed arcs, (i,j) c Y, a set of decision variables Yijk has been

introduced which can take the binary values I or 0 as in.'icated by (6.15),

depending on whether or not arc (i,j) c Y is available for use at time

For n-1, constraints (b.12) have no partib.ular meaning and may be

dropped from further consideration.
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period k. Constraints (6.11) therefore guarantee that for a non-constructed

arc, the corresponding flows will vanish (Yijk = 0), or otherwise that

they do not excL.ed the provided capacity (Yijk ' 1)

The set (6.12) acts as a "turn-on switch", guaranteeing that if a

certain link is adopted for investment at time period s (i.e., Yijs = 1,

with Yijk = O, k < s), it will remain available for utilization in sub-

sequent periods (i.e., Yijk w 1, k ) s).

Constraints (6.13) represent the budgetary constraints; here
Yo--0 for all (i,j) € Y. The difference of the decision variables for

two subsequent time periods, in addition to (6.12), guarantee that a single

capital outlay is disbursed for each project.

If the problem being considered calls for multiple outlays once a

link has been selected for construction, e.g. when maintenance costs are

considered, it suffices to modify the budgetary constraints (6.13) end

replace it by

(,j)Y aijk Yijk 5 8 k k (6.16)

Finally, relation (6.14) simply expresses the non-negativity

conditions on the arc flows for all time periods.

REMARKS. We observe that for the single time period case, the index k may

be dropped; constrainLs (6.12) will no longer have any meaning and may

also be dropped. Constraints (6.13) reduce to a single budgetary constraint

and problem M becomes the link-addition problem as formulated by Roberts

[17], except for the fact that construction costs are not part of the

objective.

If both indices a and k are relaxed, the resulting model becomes a

single period problem of capital investment in links of a general homo-

genemus commodity network.

This problem is somewhat similar to the knapsack problem considered

in Chapter IV. The main difference, however, is that the payoff function

for a certain combinatiort of links may not be determined until a cost

minimization network flow problem for the configuration under analysis is

solved.



THE MULTISTAGE NETWORK DESIGN PROBLEM 105

Finally we remark that the objective function is linear and represents

the total user cost over the entire Interval of interest. Therefore, model

M in its most general form is a (0-I) mixed-intege- linear program of a

very complex nature, as may be Imn•ediately recognized, but with important

structural characteristics that we shall Identfy in the folowing

section.

6.10 STRUCTURAL CHARACTERISTICS OF THE MODEL

Let us assume that the node-arc incidence mit-Ix E describing the

network G - [N, A] is constructed in such a way that all arcs (i,J) C X

occupy the first part of the matrix, while ar:s 0i,j) E Y will be

associated with the -emaining columns of E, Accordingly, we define the

following partition for E, E = E], E].

Let and 20, be the flow vectors for arcs (i,j) c X and 0i,j) E Y

respectively, for copy a in time period k. Denote by 4 the vector of all

decision variables at time period k, by .4 the demand vector for copy a in

period k, and by - the upper bound vector on the flow of arcs (i,j) C X

at time period k, Finally, according to the partition defined for E, let

_" and si be the user cost vectors for arcs (i,]) E X and (i,j) E Y

respectively, for copy a in time period k.

Our model M may then be rewritten in the condensed form depicteo in

Table 6-1. Here I is the identity matrix, Uk is a diagonal matrix having

the upperbounds u1 jk for (i,j) c Y as diagonal elements, and ak -s the

vector representing :apital outlays in period k for all (i,j) E Vt The

non-negat'vity canditions on the flows and che binary values of the Yijk'

although not expl-citly indicated in Table 6-1, are to be satisfied.

The arrangement of the variables in Table 6-I is highly suggestive

of a partltion 'nto two sets, the first embodying the derision variables

,yk, V k, and the second a.' the flow variables for all time periods.

Furthermore, Table 6-1 presents a similar structure to that of the class

of problems presented in Appendix A, (sze Page A-3), with additional

simplifications Indeed, using the nct.tlon of the Appendix, we observe

that all tre B 'at(i,;es are identical in our problem an[ are highly

structured as we!', k.jqge:tlng that additional e-p'otatlon - possible.
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The A matrices are composed mostly of zeros except for the diagonal

submatrices Uk. Finally, observe that co, the cost associated with the

binary variables, is zero in this case, a fact which will further

simplify calculations.

6 11 SOLUTION NLTHOD BY PARTITIONING

In this section we discuss the partitioning technique of Benders as
presented in Appendix A when It is applied to our multistaged link addi-

tion problem M, We shall use approximately the notation of Appendix A.

In the present case, the set S is defined by all y jk satisfying con-

straints (6,12), (6 13), and (5.15). At each step of the algorithm, and

once the auxiliary (0-1) problem 3' has been solved yielding the optimal~0
values Yijk' these will be used to solve each one of the subprograms:

N
Pk ;Minimize z £ E ci x(

0-Il (i,j)cA Uk lk (6.17)
N

Subject to r eijJ xijk rik ,(

NN •i < u , (i,j) s X (6.19)

a~ ijk -Ijk (-)F

N o
LXik - j k i•jk , (i,j) E Y (6.20)

x C, >i , 11 ) E (6.21)
cij

for all values of k (all time perious). However, problem Pk is essentially

d inulti-copy network flow problem and therefore, at each iteration of the

partltioning algoritnm, n problems of the forin Pk must be solved for the
gi alues •°u 0 Each of these problems presents ir turn a block-

anguiar str.ucture and thus i higher 'evel of decomposition may be applied-
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For example, the Dantz2g and Wolfe decomposition method, as investigated

by Pinnell [8] may be applied. Whan this scheme is used, the solution of

each subproblem at each iteration of the decomposition procedure reduces to

finding its shurtest path -tie.

As for the second part of tfie partitioning algorithm, the solution

of a'. all-integer (0-1) programming pr.blepi is required with one or two

additional constraints At each iteration.

The nroblem presents the following form:

n

B Min miaze z , r Yk (6.22)
k~l

Subject to

tik " k ijkt -jk *j lkt Uijk Yijk Y Yk, (6.23)l~l (1,j)E.Yik "1k'lj)CY

t E T k

Yijk " Yijk.,l <0 , (ij) Ey , k1l,..., n-i (5.24)

E lj k aijk(Yk " Yijk-y) s Bk, * k (6.25)

Yi,lk = 0 or , V (i,j) E Y, * k (6.26)

Yk unrestricted, 4 k (6127)

where [Rkt' Rijkt1 are the comporents of an extreme point t c Tk of the

polytope associated with the Ov'al of P k

For the one copy caie (n LI) and for integer demands and capact.ies,

network flow theory shows that, the dual variables 7T are also integers.

Hence, froth (6 ?'), the Yk are integers. Probilem B' the-efore an all-

infa.ger proqgam from which u feasible solution is alrtidy d'ailable (namely,

0, (0,j) c V. k) and the YoL g-Genzalez algorithm may be applied.

For the multi-copy c;'s, however, the n values are not reecessarily •iteger
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and the Yk may not be integer. B', in this case, is a mixed-integer
linear program,

We conclude with the following remark on proo'ems with a more flexible
budget structure,

REMARK. The basic model considered in formulation M may be extended for
the case of budget ceiling deferrals. The mechanism that permits funds
which remain unused in a certain period, to be transferred to a later
period is given by a proper manipulation of the slack variables of con-

straints (6.13).
Let s k 1. 1, n be the amount of unused funds of periud k. The

constraints (6,13; take the new form

E ajk (Yijk - Yijk-)lsk-1 + sk = Bk' k=l,...,n (6.28)

with so =O, and with sn representing the idle funds, if any, at the end

of the assignn~nt. We observe that no present worth factor is attached
to the variables sk, so they represent for-all cases, simply idle cash.

The solution to M with (6.28) instead of (6,13) is not substantially

altered. Its influence will be reflected exclusively in the solution of

the integer program, B', by augmenting the problem with the n slack
vbriables sn. !f aijk and Bk are assumed to be integer, then sn, *n will
aiso be integer.
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APPENDIX A

THE DECOMPOSITION PRINCIPLE FOR MIXED-VARIABLE PROGRAMS

A.1 INTRODUCTION

In tnhs AppendK we sha'i present in detdil the partitioning

technique d,,veiped by Rende, (I] s :ippilei to bolh -ontinuous and mixed-

integer linear progxmming problems presenting the so-called btock-oangu.ZaA

structure, In the case of continuous linear progrdms the method, as noted

by Benders and also by Balinski [21, constitutes a dual form of the

Dantzig and Wolfe decomposition principle [3]. We shall explicitly show

this property

In the linear progrdmmling case, the partitioning technique requires

the solution of a linear program differing from the one of the previous

iteration by one or two constraints. Thus-the daZ-64mptex method is

indicated to reoptimize the problem subject to the additional constraint(s).

For the case of the (0-1) mixed-integer linear program, the parti-

tioning technique requires the solution of' an all-integer (0-1)

progranmiing problem augmented at each iteration by one or two additional

constraints. The foung-Gonzdlez algorithm [4], [5] is the method we have

selected for the solution ot the all-integer program, and a procedure to

reoptimize the solution of the previous iteration is indicated

rhe partitioning technique developed here is directly applied in

chapters V and VI to the solution of multi-stage network synthesis proble,-s.

A.2 PROBLEM FORMULATION CER.IAfION OF AN EQUIVALENT PROGRAM

tie shall consider the class of mathematical programming problems with

the following analytical formulation:

A-I
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A Determine x0 and K_0 so as to

mMinimize z ý0 x 10 "'X•I x- (A.1)
i-l

Subject to Ao 0 A b.o (A.2)

A I ýo ' I•, "1 -i 1' 1 i-, m (A.3)

A> 0  m (A.4)

X -(A.5)

where A is an (mn0 x no) matrix, AI is an (m, x no). iatrix, Bi an

(mi x n I) matrix, K, and c are vectors with ni components and bi are

vectors with m1 components. fhe no component vector -x is defined over

the region 9o We sndal define S0 as the intersection of (A.2) and (A.5)

for the following special cases ofSo:

1) 0 the non-ragative orthant. Thereforeo
SC = (x / Ao x = b . >-O0 (A.6)

J -0 0 -0 _..o

iS) 0 the discrete set defined by the vertices of the unit hyper-

cube- Therefore

so ., (x , A° x bo, - 0 or 1 j--l. ., n } (A.7)

For case '), problem A becomes a linear program In standard for" that may

be solved by .applying the decomposition principle of Dantzig and Wolfe to

its dual program For case ii), the resulting progran is a (0-1) mixed

integer pro-gramming prootem. It each A, O- 0, i M ,.. , m the problem

reduces to a set ot ( .,:u1•,ta,4 problems of the form
Mir z _ , B _ D ' , 0 In any case, the constraints of

1 1 1-ýý 1

problem A present the rollowing associated structure of block-angular

form:
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-R) Fo b
A1  Bi - I (A.8)

A2  B2

We shldi lunw devei,,p a progrdm equivclent to problem A. Denoting by

x = [x1, , ,2] a solution vector to A, the problem may be expressed

in the equivalent form

r mMinim':ze so ÷ m* mm c I xI / Bi1 1  b - Ax1 , (A.9)x-c0 x. i Bi x -.-b1.A o'x A
x O E So 0x I-

The minimization problem within cuwty brackets, for a given value of

E So, becoiuas a standard linear progra•i in x, which we denote as P.

Note that solving P is equivalent to solving the following set of m

mutually independent linear programs and summing up their objective

fun~ction values:

P: Miri•ize Z - c1 K

Subject toB b-A I • A i, m

0 -

Problem P idS fn issocidtej dudl program D that may be decomposed

into the following set ot LL', corresponding to the dual programs

of P-
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D Max,mize j1  1b, - A1 •o) •

Subje,•t tD Bi ul

U, dnrebtricted

where the symbo" . n) inia tes trinspose. By the duality theorem of

linear programnitig, if teasibD: solutions evist for both P1 and D,, then
0 _their optimil soluti)ns zL Ind z satisfy zi

Hence, expression k.A 9) may De expressed in terms of the dual

problems D as follows.

Miniox L bi- A1 x u / B' u. • (A.1O)
-X -1 S-I

-0 0 -

Consider the convex polytope (a finite number of closed halfspaces)
S1 - {u1 / B; u1 < c , Observe that Sis independent of the values of

-. We shall assume temporarily that S, Is bounded (i .e, it is a convex

polyhedron) Then from (A 10) note that for any vr1tu of 2o c So, the

maxMx,•i of each subprogram D1 will occur at an extyeme point of S. Denote

by Uik. e Ki the extreme points of the polyhedron Bu < c_. We shall
assumre that there are N such extreme points. Hence it suffices to cal-

Lulate the values of (b,- A o) u for each extreme point and select

the n.,ximum value, yielding the solution to 01 for a given value of x.' -o
From tthe above discussion, (A.10) is equivalent to

Minimize L. ma. ijb -A _ V iK 1  (A 11)

Let y, max (b - A •o) I ; then or. each extreme point
-I

Uik the following condition holds:

- A ;' qj • y (A.12)
-1 1 !01 -1k
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If we proceed analogously for all extreme points of each S1. then

(A.11) may be explicitly written in the form:

B : Minimize Z =• - o C K + (A.13)

Subject to (b, - A 1 •)'u.1k 5 y, 10, .. ,m, kcK1  (A.14)

4 so (A.151,

y, unrestricted 9 IZl, -.o m (A.16)

The relationships 'A. 13) to (A 16) define a new prog,'am in terms of
the variables ! and y,, which we shall now show to be equivae.nMt to

problem A.

If ( , x_) is an optimal solution to A, then x_ Is an optimal
0 -I

solution to Pi for ý. .o Also, Di will have an optimal solution for a

certain extreme point u0k. Hence, in problem B, expressions (A.14) will
be satisfied, and those corresponding to !!ik will be satisfied as stricto0
equalities, thus yu x (b. Ak = c1 x9  This implies that the6 -1 -o .-
optimal solution to B', (,' y 1 ,, gives the same value fcr the objective

function as that one obtained by A.
Conversely, assume that ( , y?) is an optimal solution to B. Then

for each i, at least one value of Glk will satisfy (A.14) as a strict
equality, say u°s corresponding to the extreme point optimal solution of

r 0Di. Then by solving the problems P. for xo a x we will obtain x? with
- 0

E ci xo . . Y° Since Lne optimal solution to A for a value
10 corriýonds to the solution of P1 ' it follows that ( 0 . x?) is

the optimal solution to A with the same value of the objective function
as the one obtdined for B

For a formal proof considering the unbounded as weil as the
infeasible case the reader is referred to the work of Benders (1).

We shall focus our attention upon the solution of problem B ror the

two special sets o defined at the beginning of the section
0
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A.3 THE CASE WHERE "'o b. HE NON-NEGATVE ORIHANT

We consider p-3b'em B with S0 g9oen b• the expresiidn (A.6)

Problem B, whCP, we sha-1  31a1 the ,aitex pmt.gt, becoimes

B Min,'ze I - " . , 1-l . . ,m (A 17)

ubtect. to A' l) , I b k GNl (A.1)

-A --ak !n *NDo.

x 0 > 0 unresticted

Tho,;, in pissing f-om the linear progrim A in standatd fonm to the

equivalent ýLLq. •it~g• B, by partitioning the set of vdariables into x

and the remain,ng x, we have reduced the number of 2a-libles from W n"
1-0

to (n # m). At the n3me time, we have increased the number of con-

ýtraints from ý m, to U.mo f £ NI)
1"0 14•

Direct solut~on of poblem B ha~dly p-oduces a positive net result,

since such an jppfoa-h !mp'ies tne cai:u'at.on in advance of all con-

straints of type A ;8l, - e the :alcu'ition ot al' the extreme points

of the conex poaynedi S Ma-eo)er, ir an optImum iolutIOn to 8 is ob-

tained, Say a 0. Y, then the j,utlon to each of the m linea- progr.%ms

_ -0
P!for K,• " o Seq'd ne ttndhe -J•esponding optimal

vectors x , m)
Howeve-,. ii ,e op,•i.n' :',tton tj B only a subset of (A 18) will

be active The Bende-, a'1.ot-ilm to' s-'ution ot problem B (cf Secti:on

A.5) makes use at th'is t- in attempting t) gener3te those constraints

(A.18) that dete-mine oprii, ty ro- B The procedu'e so'ves B with a

small subset 3f canstr-,nts A '8);' t opt m3 ,ty is not obtained, the

aubptigt'na D i.e io',ed t) geneeite addit'-n3l constraints to the

maiite p0*.,-9 .g . , whi:h in turn wi!k have to be -eoptimized Tnis al-

ternative process is fepeated unti' an opt'mal .iolution (if one exists)

is obtained in a r,•'te numo)e, of steps, gjioanteed by tne .act that the

number ot .-onsti it). tA '8,1 , Tin:te
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The soli•on pf•cedue just out!ined close'y pa-ellels the
deeompoo.tt,.Al afgot,..b of Cantzig and Wolfe, We shall now interpret It

In detal

By obtaining the dual of PrOtiem B we have

N
C•Ma ze flK X (A.19)

i-! k-,

N

Siojezt to L L d1 ý11( - A 0 to = (.0i=1 k-ý

NE x ) i (A.21)

XlK >0

-•0 unrestricted

where fik = b61K and I -- (A' k)'

-A -ik I i

We ubserve that problem c corresponds to the so-called manteA or
exAema.Z p.tobtem ,f the dua of A, in the context of the Dantzig and Wolfe
decomposition principle. Tnis justifies the name that we have assigned to

B in descnibing Benoers' decimpositlon principle- In C, the variables
Xik' (i11, ,m; k:1, ,N,) are weights ti-ming a convex combination of

the extreme porints uk at the polyhedron S,

In the optimal solution to prob em C, only a small subset of the
variables Xik will be basic The Ddntzig and Wolfe method for solution of

the dual program of A makes use of this tact; it tries to find the subset

of XiF that detemines optimality tar C without examiling all basic

feasible solutions. This method ti-st obtains a basi,. feasib e solution

for C; if the solition IS no' optiml,, the subprograms D1 arf solved to

generate a new column ki e , 1 -p&:.t ,,':t) that should go into the

basis of the riaster program C This process is repeated until an eptimal

solution (I? one existi) is obtained in a tinite number of bteps,

guaranteed by the fact that the numbe- of e~treme o3ints of the subprograms

D0 is finite
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Finally we observe that for optimal solutions to 6 and C,

(assuming non-degeneracy), to each basi: vatrable X•k of C theie corres-

pcnds an active constralnt of (A1B). "his t3rlaws from the complementary

slackness conditions:

Ok . R )4 0'Y1 11 k

A.4 EXIENSION TO THE CASE WHERE THE Si ARE NOT ALL BOUNDED

If S1 !s an unbounded polytope, tram! convex set theory we know that
it possesses a rinite number of excreme points uiik, k e K, and a finite

number of ex•temea Liay6 ' Z E Li. emanating from certaln extreme points.

Hence it may occur that for a certain value of x)e SO in (A.ll), the

solution to one of the dual prograis D, tends to Infinity (i.e., problem.

Dis unbounded) alorg the half line

I a Al -k + 6u-1t k e KI £t.LI, 6 > 0}.

The corresponding value of the objective functior may be expressed as

Li£k - 1 h) ~4(i A, xo)' ji

If z ' .Ad since 6 > 0 '-om the previous expression, it follows that

(b A - !A o)' -it > I (A.22)

If DI Is unbounded, problem P1 and thus problem A are infeasible for

values of o c So for which (A.22) holds. Hence, to prevent x from tak-

ing on such values, it suffices to restrict (A.11) or its equivalent
problem B with the following constraints associated with all extreme rays

of St:

04 Ai xo) ait s 0 t E Li , 1 (A.23)

.1
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The extreme rays of S. may be obtained by finding the extreme rays
of `ts associated pctyhed'aZ cor.nýe cone {uR / B' _u ý 0}, In this matrner

the set L1 is determined and the set of constraints (A.23) may be
constructed.

If constraints (A,23) thus constructed are added to problem B, then

any fessible solution (x, y,) to B, with ýo then used in selvlng the
problems P,, will oesult in a feasible soluticn (t, i) to the original

problem A.

Finally consider the linear programming case ot section A.3 with

constraints (A.23) included, Note that the resulting dual program C is

analogous to the one obtained Dy applylng tne Dantzlg and Wolfe method to

the dual of a problem A containing unbounded subprograms.

A.5 THE PARTITIONING ALGORITHM OF BENDERS

The Benders' partitioning algorithm, instead of solving directly

problem B, solves iteratively a less restricted problem B' with the same

objective as B. At each new iteration, additional constraints are added
to B' and the problem is reoptimnized. Since eventually B' would be iden-

tical to B, the optimal solutica to the latter must finally be found.
However, the method tries to reach optimality for B by solving problems
B' with only a small subset of the total number of constraints.

Let I be the set of indices !=I,, , m, and I' a subset of I. Also
let Ki be a subset of the set of extreme points K, to subprogram i, and

Li g-Lt. Then problem B' may be frmnu;ated as follows:

-0 -o oB' Determine and, Y I so as to

- m
Minimize 2 c io -0 Yi

Subject to (b - A. < u I', k F K' (A.24)

(b A, u-. , < 0 ; i c I'. t L, (A.25)

-0 E S, unrestricted; il,,.,

-0 4
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Assuming that an optimal solution with value z° exists for B, and

that 2° is an optimal solution t0 B', it follows that 20 < z°, since B'

is tea6 restricted than problem B. That Is, the solution to B' is a lower

bound on the optimal soluion to B_

The solution pfo:.ess consists of solving B' and obtaining (Q, y)
and 20 - It , (if B' is infeasible then it follows that B is

infeasible), Tne tial solut'on _xi I1 the, ,eplared in B and the problem

is solved for the jilues of y,, Solving B t:o a given - Ax ift equiva-

lent to soving tne subprogvams D, fo- that value of .o and c'tUining a
0set of extreme ponti ," and a set of values y Thus problem B for

has tne ý3u 1'fl Y,) and z z c X , i Nciw zand 20

are compared. If 20 < z, then th? current constraint s of B' do not

determine optimality; tiew constraints generated from the extreme points

Yk obtained fromi the solution to D are therefore added to B' to complete
one iteration of the algcrithm. On the other hand, if 2" z z the solution
20 tv B' is optimal for B, and tnus it satisfies the original problem A.

Next we shall restate the algorithm, considering all of the different

situations. For a rigorous proof of the termination rules, the reader is

referred to the work of Benders, El).

INITIAL STEP. Obtain a subset of extreme points Ki and/or extreme rays

L; to generate prublem B'.

STEP a. Solve problem B'

a.l) If B' is lrfeasible, B is infeasible; stop, problem A has no

feasible .;olution

a.2) If B' is unbounded below, take as the value of x0 for step b

any feasible i of B' corresponding to a small value of 7.

a.3) Othew se B' has in optimal solution 20 and (_, a), so go to

step b

STEP b. Solve problem B for !0 1 0 from step a. That is, solve all"-o-
subprograms D0 for that value of x."
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b.1) If one of the subprograms D1 is infeasible, stop. Problem A
is either inteeslble or unbounded below, (This case may occur

only durfln the first iteration.)

b.2) For each subprogam 0, that is unbounded above along the half
line {u, / ui - _ik + A Zid) add for •lt a constraint of the

form (A.25) to problem B'. Tf also (bk - Ai )-U

then 6, defines a constraint or the form (AW24) to be added-jk
to B'. Go to step a-

b 03) Otherwise afl D have an optimal solution Rik' Calculate

(t) 'A U A. l qn ~t) y'efp 7
m

STEP c Obtain z co " y

c.1) If to z, stop; the solution z and (Q, y?) is optimal for B.

By obtaining the solutions tn the problems Pi we obtain 1i.

and thus z and (0, x?) constitute an optimal solution for A.

c.2) If 20 < z then each of the P°k defines a new constraint of the

fom (A.24) to be added to B'. Go to step a.

We note the following properties of the algorithm:

i) Each time that step a is executed (i.e., problem B' solved),

20 constitutes a lower Lound on the optimal solution z° which is also a

better lower bound than that of the previous iteration.

ii) Whenever step b is executed (i.e., problem 8 is solved for
_O - Ro), either we obtain the opt•mao. solution to B, (detecte6 by c.l)

or the solution to B constitutes an upper bound on z°, (i.e,
z 0 <o° i 4 Y). The best upper bound, however, does not necessarily

0 l I Il

correspond to tne value vf the objective function of B obtained in the

current iteration, but is obtained as the minimum valiue of the objective

function of B over all iterations perforned so far

A.6 THE CASE WHERE o IS THE SET OF VERTICES OF THE UNIT HYPERCUBE

0

In this section we consider problem B In a slightly different forn,

in order to conveniently study the case where S0 is given by expression (A.7)
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mIn erpression (All), set y + max { (i - A1 O)ý uik
keK1  l

then for any comblnatlcn of m, extreme points taken one from each convex

set St. the following condition holds-
m^

Eo 1 - A. xo)' el y ; k e KL

Expression (A.l1) may therefore be conveniently expressed in the

form of the equivalent problem to A:

B : Minimize z a y (A.26)
m^

SubJect to so !o + E (b-Ai 1o)' !Lik Yo'

,i=,,...,; k c Ki (A.27)

A- A1 o)' -i 0 , i=I,...,m; t c Li (A.28)

Ao 0 o - bo (A.29)

Xoj Z 0 or 1 (A.30)

Yo unrestricted (A.31)

The (0-1) mixed-integer linear programilng problem A is thus

equivalent to B. Except for the unrestricted variable yo, problem I is a
(0-1) all-integer programming problem with no integer variables and a
potentially large number cf constraints. For certain network flow problems
involving decision variables and satisfying som. additioal Integrality

conditions on the input data, the variable y0 may also be restricted to
be integer (cf. Chapter V), It is for this class of prblems that we
shall discuss the solution procedure of step a of the Benders algorithm.

The problem 8', (B with a iivbset of (A.27) and (A.28), will then

contain no + I Integer variables and may be solved by means of a branch
and bound algorithm (cf. Chapter II). However. we consider that the primal
all-integer algorithm, develoited Independently by Young (4] and Gonzilez

[5) and denoted here as the Youwg-Gonz£i•ez atgo~itt•, is more suited to
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the conditions of the problem. Indeed, the following properties indicated

by Gonzil.z (51 fully apply to the solution of B':

1) Gonzalez presents a special procedure for treating unsigned

variables, whicf, applies in ouw- case to the integer and unrestricted

variable y0 in V'

ii) He daso presents a special way to handle integer variables

restricted to take on tne vilues 0 or I.

i1i) Given the nature ot the objective function, (i e., y0 is the

only variable and has a positive coefficient), the initial tableau

already sdt'isf't, aptna -ty ;Txlrb row elehenis ; U)i althougn it mV., not

be primal reasiole Therefore it suffices to apply the Gonz&lez pro-

cedure to obtain a starting feasible solution.

Finally, we have observed that each time a new constraint is added

to a problem after step b. of the Benders algorithm, problem V' may be

reoptimized simply by updating the .onstraint in terms of the current

tableau, Since the slack of the -onstraint will be negative, and it is

restricted to be positive, we apply the Gonzilez method to remove the

infeasibility of t~ie slack variable. This operation may alter the

optimality of the first row If this ,i '.he case, the tableau is then

reoptimized From the prope,'tles we have indicated, we consider that the

application of the algorithm in Chapter V for the soluti._,n of the multi-

stage link addition problem is justified.

A.7 SOLUTION OF AN EXAMPLE PROBLEM

Consider the following prob,em:

A : M in z - 7xi 6 N2 • 5 k3 , 4 44 • 3 K5 - 12 A6

4x, 2 2 t 5x3 > I

4 •32 • 3 6 ,9 x

5xI 4 3x6  Ž5

2x + •- 4x 6



A. 14 DECOMPOSITION OF MiXED-VARIABLE PROGRAMS

Although the problem is not in standad •orm, we snilI not. add slack

variables, but w1; use the griphica! representation ot the sets Si..

Conslde, two subprograms'S, and S2 , indicated in Figs, A-) and A-2
respectlve'y. 'hen the va'ious elements of problem A a'e

"2 43 x4 X5 x6

AA2 [2] :1 82 - 0 _1 .4

S o

SI {(u 1 ,u2 ) / 2u, * 3u2 ý 6. 5u, + u2 < 5; u1, U2 > 01

S2 "u3,u4) / u3 4, u4 < 3, -3u 3 - 4u 4 f -12; u3 ,u 4 >O1

INITIAL STEP We shall assume that an extreme point for each S, is known,

say al, - (0, 0) arnia (0, 3).

ITERATION 1

STEP a. We solve B'. To reduce the nupiter of variables In R' to 2,

(i.e., 1I and j), thus penitt .-g a graphical solution of this step,
2

we shall set y 2 m• x. a ( -b Ai U
I -I kEKi - i

B' : Min I - (

" 18

if 0 5 unrestricted

By inspection (see F-g A-3s the optimal solution is 1o z 18, and Ro 0.O

STEB 0. We so 1ie the -ubp',.j-ims O0 and 0 to- X o , 0.

U2 (2 4"

0,2) 
(4.3)

9 20If.T' TY

(!.0) (4.00o

(0,0) U -• U3
FIG A-. r:' . A 2
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D:Max z, u1 + 8u2  D 2 :Max z 2  5u3 +6u4

2u, 43u., <6 U3  S 4

5u1 + u, S5 U 3

UlfU")> -3u3 -4u4  ~-12

U3 . u4 >0

D, optimal snl tion z7 16 ,

02 optimal solution zo 38, 2 (4

STEP c. We obtain z for the current value of x:z 7. Ro+z + zo 54;
0therefore k 18 < z =54, and the optimal solution z is bounded

as follows. 18 !5 zo 54

ITERATION 2

STEP a. B': Min 2

S13

+ 23ý, ý 54 (new constraint)

R, 0, 9 unrestricted

Optimal solut~ton, (see Fig. A-4): 20 19.5, and R, 1.

STEP b. 'We solve D and Dfor x wz ,1.5
1 2 1

Di: Max z ~-Sul + 2u2  02: Max z 2 -2.5u 3 + 3u4

(Ulf u2) c S, (u1 , U 2) E S 2
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D1 : optimal soluLion z 4, u12  (, 2)

D2 : optimal so0uoon o " 9' - (U. 3)

STEP c, z - 7ý. , z1 * zo - 235; theretore 2° 195 < z 23.5 and the

updated bounds far zo are 19.5 < z°_, 23.5.

ITERATION 3

STEP a. B' : Min I

* 23Z, 54

71> 34 (new constraint)

S', • unrestricted

Optimal soiution, (see Fig. A-5): ! 0 , 20 and Rz 2

STEP b. We solqe D and 02 for xI a R C 2
:~ 1  2Max1

D- : Max 11 - -7uI D2 Max z2 -5u3 + 2u4

(u1, u2 ) C Sl (u1 , u2 ) C S2

Optimal solution z 0 0, and e-ther - (0,0) or k

I - 0.0)or-12 (' 0,2)

~jp~ma 5O%~Lof 6,-,? ' (0,3)D2 Optimal solution z 2 1 2 03

0o 0 0 % 0 pSTEP c; z - ,I P I # Z 20, and I z, optimality.

rhus the optimal solvtion is: z° , 20, .2 u2 . 0, uo . 0 or 2

u3-o, U4 '3.

To ob:ain t"e optimal vilues of the primai varidbles x2, x3 , x4,T

x5 4nd o6, it suffic" to solve thE 'inear orograms PI and P2 for

xI • I
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P: Min z, a 6K 2 5K3  P2 : Mn z2  4x4 + 3x5 - I2x 6

2A2 5 - 3x6 Ž-5

3x2 + x3 a 0 x5 - 4x6 a 2

P, Optimal solution, -z0 O. x0-- 0

P2  Optimal solution, z°a 6, 0 aO, x• 26, xO 5/3

Nomally this step of solving PI and P2 is avoided slnce, for most

algorithms, the solution to problems D0 and 02 aiso determine the optimal

solution to their dual programs P1 and P2.

(0,18)

FIG. A-3

FIG A-4 FIG. A-S

:TI
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APPENDIX B

HISTORICAL SURVEY OF OPTIMIZATION THEORY

B.1 EARLY DEVELOPMENTS

It is now gelierally accepted that the first investigat*ions of

optimization were carried out by the Greek geometriclans of the first

Al,.,xandriar School (circ. 300-30 B.C.). The well--known historian of

mathematical thought, Moritz Cantor [1], attributes to Euclid (Book VI,

prop. 27) the first exc*. 'e of an extremal problem in the history of

Mathematics. T-,, proposition proves by synthetic means that if a straight

line segmient is divided into uwo parts the product of both parts is maxi-

mum whel the parts are equal No less familiar to Euclid were the

fGilowing prchiems: 'ihe perpendicular is the minimum among all straight

lines that ma,-y be drawn from a point to a line " and "The diameter or a

circle is the maximum among all inscribed lines."

The other., twc geometers who share with Euclid the fame accreditec to

the Greeks n' that school are Archimedes and Apollonius of Perga, who also

were corcerned with problems of maxima and minima. The 'former, in tne

second book of .is work on the Sph.te and Cyi-inde¢,, proposes the following:
"of ill spherical segments whose surfaces are equal the hemispherc has t.he

greatest volume". The latter, celebrated for his work on the conic sec-

tions, determines in his fifth book "thpe shortest line that may be drawn

from : point to a given conic section".

Pappus of Alexandria, who belongs to the second ,"exandrian school

(30 B.C. - 641 AD ) is credited with the solutiuin of several "isopheri-

metric problems". The first ten propositions of his fifth book, [3], ar-2

directed towards the proof of the proposition that among all figures of

s&r.e perimeter, the circle has tie greatest area. He later rlmarks that

if most of the properties of the sphere had already been found, one

Bl-
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remained to be proven- "of all the solid figures having the same area

the sphere has the greatest volume" ills proof is not general and the

problem became one of the most controversial issues of matheiiiitical history.

Its rigorous solution was not. obtained until the second half of the

eighteenth century Dy means of the calculus of variations.

In his book VII, Proposition 61, Pappus solves, by synthetic geometry,

tne following problem: "Minimize the function x'-x "; his solu-

tion is much sirpler and r.ore elegant than its analytic gounterpart using

the differential calculus.

In the seventeenth century, after a deep lapse of mathematical

progress characteristic o1 the Middle Ages, and before Newton and Leibnitz

developed the calculus, Fermat published his Methoduz ad dizqui.endum

maxýumn et #uvonwn Ball [2J suggests that his method was developed after

a remark by Kepler, that the values of a function in the neighborhood of

an extreme point on either side must be equ,l. He solves the probirim

treated by Euclid of finding two numibees such that its sum is qiven and

its product is to be minimized. His method is equivalent to taking a

neighboring value of x, namely x e, whhere e 4s wvy -mall, and setting

x(a-x) a (x+e) (a-x - e). SimPlifying the algebra and ultimately setting

e - 0, the solution is obtained for x = y. Later H'iygens, from the Hague,

stated in general terms the rule used by Fermat. Ab(,ut 1573 ke solved

the problem: two points P,, P2 not oni the ;tra.g'it l1 ne AB are given.

Find a point P on AB such that + W is a minimum.
*1 2 i nnmn

B.2 CLASSICAL PERIOD

The epoch of formal devwlopment of clacsical optimib.ation theories

(indirect methods based on the ".lifferential calculus) begins with the in-

vention of the calculus. The theories obtain necessary conditions to be

satisfied by U-n optim-, point Sutficiency was seldom satisfied and new

means to prove it remainea to be d'scovered. The main contributors were

Newton, who appl;ed his ra.hvd o6 , to ,roilems of maxima and

miniiima, and Lelbnitz, vho published in his Acta Eiud•Atuv•n of Octot, . 1o84

a general nrethui for finding iaxima and minima.
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During the second pac,' of the eightr:enth century a large class of

optimization problems, the optimization of a uefinite integral, was studied

by the Bernoullis and Eule, and systematized by Ladg.nge- Ihis new branch

of optimization theofy was termed the Catce.. )'6 v;at4•n6, a name

suggested by Euler. Previous developments in mechani':s suggested to Euler

that all natura! phenomena present extrema, and his liter work constitutes

an important app 1 'catvon of optimization theoroy to mechanical systems.

A complete account or optimization problems in mechanics can be found in

[10]. On the solution of optimization problems subject to subsidiary

conditions, a systematic method was given by Lageange in his Th/Lotte de.a

Fonct4oons, which detev.nines a set of necessary conditions for an extremum

of a function subject to equality constraints.

In the nineteenth century the work of Weierstrass of the University

of Berlin served to formalize the theory of maxima and minima. He was

primarily concerned with existence conditions, which had been somewhat

disregarded probably due to the fact that in many physical applications

either a maximum or a minimum obviously exists. H-s existence theorem,

based on the work or BoIzano, states that: t6 a 6uvcCo.1n 6(x) L6 con.tinu-

ous (q a . b, thi k.5tA , and 2 "1 " ' " b, ort whL2h
the 6utirt.-ii attaoi3 cý lagest vatlie M anid •tt sniq.ýe.,t ,,atue i.

Jacob Steiner, another mathematician of the Univeesity of Berlin,

representative ot the geometric school, solved in the eý-ly nineteenth

century a problem posed earlier by Fermat, whici, his had important appli-

cations in generalized foe- to location theory The problem is: given

three points A B C in a piaie, find a fourth point P such that the sum of

the Euclidian disitnces from each or the three points to P is minimized.

This problem has been widely publicized by Cou'art and Robbins [11] and

has lately been treated by Kuhn in [12] to present in interesting duality

concept in nonlinei, progranming

Another source of solution methods for ioptimizaton problems which

has proved efrective is the ;eneral theory o i•nequalities (see for

example [6] or (15]) It is worth mj.ntioning that the application is re-

ciprocal: namely, inequility theorems may be proved with the auxiliary

sclution of a maxincm and minimum prob.am, while certain optimization

problems ma- be solved by the use of known inequalities This reciprocal

character ;s formalized by Chrystal in [5]
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An inequahlty that has largely contributed to the method mentioned

above and that h1 been a basic cornerstone of the latest development of

optimization tne)-y, Gemet', Progammlng, [7), is the so-called

geom.11t= . ,' This inequality states that for a finite set of non-

negativL numbe,, the j,ithmetic mean is at least as great as the geometric

mean. The English matheMatiian MdcLau-in is credited with the first

general pr3ot it the geomet,1: inequality He enunciated the theorem in

the following geometri: form, [8): 11 a &t4i. AB a L,,ided •t.to any

nomnbeA 16 pi, i1.L-C ifeth j, pa,ýti ~v.U be a ma onum when ~the
paJtta ati ioi.• , rhe best known ana~tical proof of this

classical inequdty, however, is due to Cauchy, (16).

In the work of Harris Hancock [P2], [13] published in 1917, we find

an excellent summary of what may be considered the state of classical

optimization theory up to that time In [13], Hancock indicates that

several inaccuracies carried through from the developments of Lagrange were

corrected when a major revision of the theory of maxima and minima, sug-

gested by Peano ot Turin, was carrled through by the work of Scheeffer,

Stolz and Dontscher In (13], sections 109-I12, he presents the treatment

of constrdined optimization problems subject to inequality restrictions,

and makes use of qudd.itic sla5 k va-iables to ,educe the problem to

equality constdinltS

B.3 MODERN PERIOD FIRS! OCOADE

It is ji-fig tne inode,, period that the theory of maxima and minima

has been widely b,tadened aid given thne now generally accepted name of

Opt*.at...t i. ,., Pimae,'y responsib!e to, such a task are the

hwnrican s•,entists :..•z. -aied on the development of the theory during

and afte, World wd II

The moden pe, io ot o)pt im;zatln theory (Or ",enaissance", as Nemhauser

[17] likes to put It). Stdrted in 1941 with G Dantzig's Simplex method

for the solut¾,n if lind,- p-ogadms In the two decades since that event,

the development , ,t',nlzatlon theo~y has been e~t~emely fruitful In both

pure analyti'a ze h,, ue id appl,_ir'ons to the managerial sciences,

the mllltdry, erqnee.inq, in-l the phyblcai sziences
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As in various other fields, the substantial new developments that

took place in the middle fifties are due in great part to the 5dvent of

the digital .ompute- as a common tool in scientific research and develop-

ment, This tact may very well lead in the futufe to the study of the

history or sc.iences by dividing it into two parts: before the computer

and after the computer This is no less true in the case of optimization

theory.

The first decAde of the modern period, 1947-1957, is characterized by

the formal solution of the linear programming problem and the rigorous

analysis of its underlying mathematical theory The work perfomed during

the two yeirs 194-9g49 was p-esented at the n_- Miitori: C>IZe.6 CxM0i,66.on

con 'ten-a in Chicago in 1949, and selected papers were published in

Activay Anatyz,_: o6 Ptdý.ditvn aud Altocatcon, edited by T. C. Koopmans.

A number of dpplications in business and industry followed, associated

with the names of Charnes and Cooper, who published with Henderson in 1953

what constitutes the first textbook on the subject matter [18), The book

of Gass [19], although published in 1958, may also be considered a product

of the early developments of linear programming

The principles of the mathematical theory, as well as the statement

of duality, were laid down by von Neumann. The rigorous studies on duality

and linear inequality theories were carried out and published in the work

edited by H. Kuhn and A Tucker of the Princeton school in 1956, I.neoA

inequ~at.(e& and R•eated Sy•tem6

The success and achievements of this decade stem largely from the

development of computer codes for the solution of linear programs which

bridge the gap between theory and practice and open a wide avenue of

applications

Almost in pa-allel with linear programming, R Bellman [20],

S. Dreyfus (15] ard others have developed another powerful optimization

technique, dqtank, _ .•,, of particular application to problems of

optimal control and multistage decision processes

For a complete account of the background of and contributors to the

modern development of mathemdtical programming, the reader is referred to

Dantzig's own adcount, (21)
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8.4 MODERN PERIOD. SECOND DECADE

The second decdde of , ,oo..rn period has been mo-e prolific by far in

the development at new methodologies of optimization It has seen the

verification of Dantzig's prediction in his opening address to the Third

Symposium on Mathematica) Programming held 4n Santa Monica, California,

in 159, [22]. "Today, we who are gathered here are about to witness

the start of an explosion "

We shall mention b-iefly the highlights of such accomplishments and

the principal contributors to each field.

The special i.4 cueat.,t•. pj'ppent~y of certain classes of linear

programs observed by Dantzig [22], has been a keystone of the development

of network flow theory The principal contributors have been Ford and

Fulkerson [23], [24] who proved the maximum-flow-minimum cut theorem for

homogeneous commodity flow in networks; Berge [25] with his rigorous work

on graph theory; and Kuhn [26] with his work on cn•.binatorics and the

assignment problem Generalizations of network flow theory have been made

by Gomory and Hu [27] on multi-tenminal flows and by Jewell [28] on multi-

commodity flow problems

In discete and integer programming, this decade has seen the systema-

tic development of cutting plane methods by Gomory [29], and the so-called

b.un ard b•.j.q techniques by Land and Doig [31], Little et al. [30], and

Balas [71), (ct Chapter l!) For detail;-d infomation on the subject,

the reader is refered to the excellent work uf Balinski [32] which con-

stitutes an exhaustive survey of integer progranming

Pressed perhaps by the growing number oi zpplications with the ever-

increasing sizes of prob:...,, particular attention was given, starting

around 1959, to the exploitation of special structues presented by certain

classes of problems F;om these studies evolved the Decomposition Principle

of Dantzig and Wolfe (33), without a doubt, a major contr'bution to the

operational sol.ition Of linqaf programs Other types of partitioning

algorithms have been proposed by Benders [34], 3alas [69], Rosen [70], and

others

In the area of stochastic progrdmming, initit.ted by the two-stage

model (if Dantzig [35] and the work of Tintner [36], muclh remains to be

investigated Tne last ten years have witnessed the work of Charnes and
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Cooper and their chance constrained model (37] as well as the most

important work of Madansky [38], (39]. Of special interest in the last few

years is the worK of Dantzig [40], Van Slyke [41], and Wets [42] on the

integration of mathematical programming and optimal control theory, and the

application of the two-stage approach of stochastic programming to the

latter. As Madansky [43] puts it, the t4_4k introduced into the programming

problem has to do witn the probability distribution of the random variables

of the problem when thebe are completely known, The uncetta•.nrty arises

when the probability distribution is known in form but one or more para-

meters are unknown An important aspect likely to be developed in the

future is tý.e , o:t"Jn cf Badic.an con.repts in the multi>tage models,

providing the capdz•llty of updating Lhe probability distributions asso-

ciated with the problem as more information is available in the process.

The remaining topic, and its basi: theoretical paper by Kuhn and

Tucker in 1951, [44). generalizing Lagrange's method for the case of in-

equality constraints, is the topic of nonlinear programming, Approximate

solution methods were developed during the first decade by Charnes and

Lemke [45] and Dantzig [46] The special case of quadratic programming has

been well-studied by Beale in 1955 (47], Frank and Wolfe [48], and Wolfe

(49]. Other solution techniques of classical nature known as ýradient

methods dating back to Cauchy, were consolidated in the early book edited

by Arrow, Hurwicz and Uzawa [50] and the later work of Lemke [51], Rosen

(52), Zoutendijk [53), Davidon [54], Doerfler [55], and others

From the field of numerical analysis several methods for unconstrained

optimization have oeen developed in the sixties, and in several instances

they have been generalized for handling constraints Of the indirect

optimization type we mention the work of Fletcher and Reeves (56]. The

d:-ect search methods are based generally on the work of Hooke and Jeevis

[58], and the random search methods on the work of Karnopp (59] and Brooks
r60)o

As a final remrark on nonlinear programming, we mention again the

latet development that seems to be a very promising optimizatbon tool

for eitgineei'ng design, constituting a generalization of the use of in-

equalities in the solution of extremum problems The work has been givern

the name of C;CL"!,(-.c Vg11V1w',g by its developers, Zener, Duffin and



4

B-8 SJ0VEY OF OPTIMIZATION THEORY

Peterson, 1967, [7), and it deals with the optimization of unconstrained

or constrained "posynomials" (positive polynomials). It has already been

generalized for the case of negative terms by Passy and Wilde, [61].

In all, the difficult field of nonlinear programming has not yet

yielded to a systematic treatment; we feel that a unifying theory remains

to be presented

Of the text books of the second decade, we mention the two books of

Hadley in linear and nonlinear prograuwing [62], [63]. The latter, if

perhaps not a complete or perfectly orgar.ized work, is the first general

text in this area. The book of Dantzig [21], that of Vadja (64), and

probably the best text so far in linear programming, the translation by

Jewell of Simmonard's textbook [65], also were published in this period.

Finally, we mention the book of Wilde and Beightler [61] and the book on

nonlinear programming edited by Abadie [67).

B.5 FUTURE RESEARCH

The Sixth International Symposium on Mathematical Programming that

took place at Princeton in August 1967, marks the beginning of the third

decade of research and development on optimization theory. From the work

presented there, it is possible to infer which are tie currents of research

likely to be developed in the near future. Although substantial research

seems to be underway In most areas of optimization theory, we feel that

special effort is being devoted to the following areas of research.

The field of discrete linear programming is very likely to develop
rapidly, as it is row provided with a duality theory analogous to its con-

tinuous counterpart, developed by Balas [72). Also, important contribu-

tions have been made by Balinski [73] on a pair of related problems known

as the maxtmu'1 match and the .tura coveting p'obtema. Primal rual
methods are therefore likely to be developed which might be of special use,

for example, in network flow tneory for problems involving networks with

disjunctive arcs (i e., flow either zero or it upper bound). Such network

models are particularly suited for solvitn tne class of problems treated

in Chapters III and IV. The author is currently engaged in this specific

problem.
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In nonllndar programmlng, more and more applications in the context

of engineering design seem likely. Also, theoretical extensions of geo-

metric programming such as the one presented by Avriel and Wilde [74) on

stochastic geometzlc programming, may be expected. The same may be said

about the important topic cf control theory. Finally, we feel that the

efficient exploitation of highly-structured optimization models will

necessarily lead to new schemes for solution of large-scale problems.

To close this appendix we shall mention that the development of

integrated optimization systems, employing new computer tecnnology and the

wealth of optimization techniques currently available, holds great promise

in the solut'on or ia,'ge-scale optimum design problems. The need for

powerful synthesis algorithms such as thosp mentioned in the introductory

chapter of this work will contribute to this development,
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